<< Chapter < Page Chapter >> Page >

Gene flow

Another important evolutionary force is gene flow    : the flow of alleles in and out of a population due to the migration of individuals or gametes ( [link] ). While some populations are fairly stable, others experience more flux. Many plants, for example, send their pollen far and wide, by wind or by bird, to pollinate other populations of the same species some distance away. Even a population that may initially appear to be stable, such as a pride of lions, can experience its fair share of immigration and emigration as developing males leave their mothers to seek out a new pride with genetically unrelated females. This variable flow of individuals in and out of the group not only changes the gene structure of the population, but it can also introduce new genetic variation to populations in different geological locations and habitats.

This illustration shows an individual from a population of brown insects traveling toward a population of green insects.
Gene flow can occur when an individual travels from one geographic location to another.

Mutation

Mutations are changes to an organism’s DNA and are an important driver of diversity in populations. Species evolve because of the accumulation of mutations that occur over time. The appearance of new mutations is the most common way to introduce novel genotypic and phenotypic variance. Some mutations are unfavorable or harmful and are quickly eliminated from the population by natural selection. Others are beneficial and will spread through the population. Whether or not a mutation is beneficial or harmful is determined by whether it helps an organism survive to sexual maturity and reproduce. Some mutations do not do anything and can linger, unaffected by natural selection, in the genome. Some can have a dramatic effect on a gene and the resulting phenotype.

Nonrandom mating

If individuals nonrandomly mate with their peers, the result can be a changing population. There are many reasons nonrandom mating    occurs. One reason is simple mate choice; for example, female peahens may prefer peacocks with bigger, brighter tails. Traits that lead to more matings for an individual become selected for by natural selection. One common form of mate choice, called assortative mating    , is an individual’s preference to mate with partners who are phenotypically similar to themselves.

Another cause of nonrandom mating is physical location. This is especially true in large populations spread over large geographic distances where not all individuals will have equal access to one another. Some might be miles apart through woods or over rough terrain, while others might live immediately nearby.

Environmental variance

Genes are not the only players involved in determining population variation. Phenotypes are also influenced by other factors, such as the environment ( [link] ). A beachgoer is likely to have darker skin than a city dweller, for example, due to regular exposure to the sun, an environmental factor. Some major characteristics, such as gender, are determined by the environment for some species. For example, some turtles and other reptiles have temperature-dependent sex determination (TSD). TSD means that individuals develop into males if their eggs are incubated within a certain temperature range, or females at a different temperature range.

This photo shows a person holding a baby alligator.
The sex of the American alligator ( Alligator mississippiensis ) is determined by the temperature at which the eggs are incubated. Eggs incubated at 30°C produce females, and eggs incubated at 33°C produce males. (credit: Steve Hillebrand, USFWS)

Geographic separation between populations can lead to differences in the phenotypic variation between those populations. Such geographical variation    is seen between most populations and can be significant. One type of geographic variation, called a cline    , can be seen as populations of a given species vary gradually across an ecological gradient. Species of warm-blooded animals, for example, tend to have larger bodies in the cooler climates closer to the earth’s poles, allowing them to better conserve heat. This is considered a latitudinal cline. Alternatively, flowering plants tend to bloom at different times depending on where they are along the slope of a mountain, known as an altitudinal cline.

If there is gene flow between the populations, the individuals will likely show gradual differences in phenotype along the cline. Restricted gene flow, on the other hand, can lead to abrupt differences, even speciation.

Section summary

Both genetic and environmental factors can cause phenotypic variation in a population. Different alleles can confer different phenotypes, and different environments can also cause individuals to look or act differently. Only those differences encoded in an individual’s genes, however, can be passed to its offspring and, thus, be a target of natural selection. Natural selection works by selecting for alleles that confer beneficial traits or behaviors, while selecting against those for deleterious qualities. Genetic drift stems from the chance occurrence that some individuals in the germ line have more offspring than others. When individuals leave or join the population, allele frequencies can change as a result of gene flow. Mutations to an individual’s DNA may introduce new variation into a population. Allele frequencies can also be altered when individuals do not randomly mate with others in the group.

Art connections

[link] Do you think genetic drift would happen more quickly on an island or on the mainland?

[link] Genetic drift is likely to occur more rapidly on an island where smaller populations are expected to occur.

Got questions? Get instant answers now!

Questions & Answers

what is a cell
Chiko Reply
what is soil
FILDA Reply
what is reducing sugar
Erica Reply
in genetics which disease is also termed as the queen disease
Phinihas Reply
what are the types of cell
Teye Reply
prokaryote ,eukaryote, akaryotes
bonney
biology is the study of living organisms
bonney Reply
what are the important of cells in the body
Nharnhar Reply
what is biology
Saidu Reply
Is the study of living things
Nharnhar
it is the scientific study of living organisms
Kenneth
ls the study of life and living organisms
Charles
what are the impotance of proteins
Mark
what is the standArd deviation
mascuud
is the study of living organisms
Erica
what is diffusion
Lenox Reply
what are the important of ecology?
Lenox
what are the importance of ecology
Foday Reply
double stranded DNA is found in which viruses?
Deborah Reply
Virusws usually dont hsve double strnaded DNA they have a single strand RNA. U should probably check them in gpogle just to be sure
Danisha
what would happen if humans were not multicellular
Grace Reply
ettr
Grace
sorry but no
Grace
what is biology
Emmanuel
study of life
Dads
what are types of photosynthesis
Dads
Is there any other type of a eukaryotic cell.
Grace Reply
what is bionomial nomenclature
Rachaelda Reply
state the role of mitochondria
Rachaelda
mitochondria ia power House of the cell. it provides energy and as ATP. Cells energy currency.
Haider
The scientific method of giving short names on the basis of genius and species.
Haider
it is introduce by carlous Lennieus
Haider
it is naming of living organism where by they are given two names one generic and the other specific name
Kenneth
what is element
Kofi Reply
Structure of water molecule and it's biological significance. .....help guys
Ashly

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask