<< Chapter < Page Chapter >> Page >

Watch this video in which a paralyzed woman use a brain-controlled robotic arm to bring a drink to her mouth, among other images of brain-computer interface technology in action.

Synaptic plasticity

Synapses are not static structures. They can be weakened or strengthened. They can be broken, and new synapses can be made. Synaptic plasticity allows for these changes, which are all needed for a functioning nervous system. In fact, synaptic plasticity is the basis of learning and memory. Two processes in particular, long-term potentiation (LTP) and long-term depression (LTD) are important forms of synaptic plasticity that occur in synapses in the hippocampus, a brain region that is involved in storing memories.

Long-term potentiation (ltp)

Long-term potentiation (LTP) is a persistent strengthening of a synaptic connection. LTP is based on the Hebbian principle: cells that fire together wire together. There are various mechanisms, none fully understood, behind the synaptic strengthening seen with LTP. One known mechanism involves a type of postsynaptic glutamate receptor, called NMDA (N-Methyl-D-aspartate) receptors, shown in [link] . These receptors are normally blocked by magnesium ions; however, when the postsynaptic neuron is depolarized by multiple presynaptic inputs in quick succession (either from one neuron or multiple neurons), the magnesium ions are forced out allowing Ca ions to pass into the postsynaptic cell. Next, Ca 2+ ions entering the cell initiate a signaling cascade that causes a different type of glutamate receptor, called AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, to be inserted into the postsynaptic membrane, since activated AMPA receptors allow positive ions to enter the cell. So, the next time glutamate is released from the presynaptic membrane, it will have a larger excitatory effect (EPSP) on the postsynaptic cell because the binding of glutamate to these AMPA receptors will allow more positive ions into the cell. The insertion of additional AMPA receptors strengthens the synapse and means that the postsynaptic neuron is more likely to fire in response to presynaptic neurotransmitter release. Some drugs of abuse co-opt the LTP pathway, and this synaptic strengthening can lead to addiction.

Long-term depression (ltd)

Long-term depression (LTD) is essentially the reverse of LTP: it is a long-term weakening of a synaptic connection. One mechanism known to cause LTD also involves AMPA receptors. In this situation, calcium that enters through NMDA receptors initiates a different signaling cascade, which results in the removal of AMPA receptors from the postsynaptic membrane, as illustrated in [link] . The decrease in AMPA receptors in the membrane makes the postsynaptic neuron less responsive to glutamate released from the presynaptic neuron. While it may seem counterintuitive, LTD may be just as important for learning and memory as LTP. The weakening and pruning of unused synapses allows for unimportant connections to be lost and makes the synapses that have undergone LTP that much stronger by comparison.

Illustration shows the mechanism of LTP and LTD. Normally, the NMDA receptor in the postsynaptic neuron is activated by glutamate binding, but only after depolarization removes an inhibitory magnesium ion. Once the magnesium is removed, calcium can enter the cell. In response to an increase in intracellular calcium, AMPA receptors are inserted into the plasma membrane, which amplifies the signal resulting in LTP. LDP occurs when low-frequency stimulation results in the activation of a different calcium-signaling cascade that causes AMPA receptors to be removed from the plasma membrane. As a result, the nerve cell becomes less responsive to glutamate.
Calcium entry through postsynaptic NMDA receptors can initiate two different forms of synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). LTP arises when a single synapse is repeatedly stimulated. This stimulation causes a calcium- and CaMKII-dependent cellular cascade, which results in the insertion of more AMPA receptors into the postsynaptic membrane. The next time glutamate is released from the presynaptic cell, it will bind to both NMDA and the newly inserted AMPA receptors, thus depolarizing the membrane more efficiently. LTD occurs when few glutamate molecules bind to NMDA receptors at a synapse (due to a low firing rate of the presynaptic neuron). The calcium that does flow through NMDA receptors initiates a different calcineurin and protein phosphatase 1-dependent cascade, which results in the endocytosis of AMPA receptors. This makes the postsynaptic neuron less responsive to glutamate released from the presynaptic neuron.

Section summary

Neurons have charged membranes because there are different concentrations of ions inside and outside of the cell. Voltage-gated ion channels control the movement of ions into and out of a neuron. When a neuronal membrane is depolarized to at least the threshold of excitation, an action potential is fired. The action potential is then propagated along a myelinated axon to the axon terminals. In a chemical synapse, the action potential causes release of neurotransmitter molecules into the synaptic cleft. Through binding to postsynaptic receptors, the neurotransmitter can cause excitatory or inhibitory postsynaptic potentials by depolarizing or hyperpolarizing, respectively, the postsynaptic membrane. In electrical synapses, the action potential is directly communicated to the postsynaptic cell through gap junctions—large channel proteins that connect the pre-and postsynaptic membranes. Synapses are not static structures and can be strengthened and weakened. Two mechanisms of synaptic plasticity are long-term potentiation and long-term depression.

Art connections

[link] Potassium channel blockers, such as amiodarone and procainamide, which are used to treat abnormal electrical activity in the heart, called cardiac dysrhythmia, impede the movement of K+ through voltage-gated K+ channels. Which part of the action potential would you expect potassium channels to affect?

[link] Potassium channel blockers slow the repolarization phase, but have no effect on depolarization.

Got questions? Get instant answers now!

Questions & Answers

complete the table below based on the levels of biological organization
Lovely Reply
Give me Examples of living thing which have 2 or more flagella?
Mahesh Reply
insect and plants
qax
bacteria and chlamydompnas
Berhanu
reproduction it's full meaning
Gift Reply
full meaning of ATP
Gifty
A life process in which living things increase their population through sexual or non sexual intercouse
Danisha
please explaination
Daniel
Gifty ATP means Adenosine tri phosphate
Mahesh
the process by which organisms produce their own kind.
Berhanu
reproduction is the process where living organisms producess their offspring
jerry Reply
what is reproduction
Nmesoma Reply
why some kinds of students are failed
Ahmadi Reply
lack of concentration
Faith
lack of guidance and counseling
ali
what's the divination of openstax
John
don't mind about reading
aine
lack of focus
Afolayan
What is the meaning of optic
Kisaky Reply
Giving a specific section of the alimentary canal,describe 3 ways in which physical digestion occurs.
Kisaky
mouth when chewing
ephraim
what is population
Ivy Reply
total number of people living in an area
FILDA
a number of people lives in one catigorize area or named area
Oburak
what is a cell
Chiko Reply
basic and functional unit of life
Edwin
cell is tissues that makes up functional life in human or un animal.
Oburak
is the smallest basic unit of life.
Kisaky
Is the smallest baic unit. o
Kisaky
why cell is very important to human body
Ahmadi
what is diffusion
Henry
diffusion is a process of mix of particles from higher concentration to the lower one,to make the body functional normal
Adam
what is effusion
Mahesh
what is soil
FILDA Reply
Is the finely divided material covering the earth crust.
Kisaky
is the upper moist of layer of the earth surface
Ahmadi
what is reducing sugar
Erica Reply
in genetics which disease is also termed as the queen disease
Phinihas Reply
what are the types of cell
Teye Reply
prokaryote ,eukaryote, akaryotes
bonney
what is akaryotes ?
Chriscia
multicellular and unicellular
Edwin
akaryotes are organisms that function as eukaryotes and prokaryotes
Edwin
akaryotes are cell with no nucleus
Edwin
biology is the study of living organisms
bonney Reply
what's the divination of open stax?
John
biology is designed for multi- semester biology course for science Major
John
what are the important of cells in the body
Nharnhar Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask