<< Chapter < Page Chapter >> Page >

Art connection

The kidney is shaped like a kidney bean standing on end. Two layers, the outer renal fascia and an inner capsule, cover the outside of the kidney. The inside of the kidney consists of three layers: the outer cortex, the middle medulla and the inner renal pelvis. The renal pelvis is flush with the concave side of the kidney, and empties into the ureter, a tube that runs down outside the concave side of the kidney. Nine renal pyramids are embedded in the medulla, which is the thickest kidney layer. Each renal pyramid is teardrop-shaped, with the narrow end facing the renal pelvis. The renal artery and renal vein enter the concave part of the kidney, just above the ureter. The renal artery and renal vein branch into arterioles and venuoles, respectively, which extend into the kidney and branch into capillaries in the cortex.
The internal structure of the kidney is shown. (credit: modification of work by NCI)

Which of the following statements about the kidney is false?

  1. The renal pelvis drains into the ureter.
  2. The renal pyramids are in the medulla.
  3. The cortex covers the capsule.
  4. Nephrons are in the renal cortex.

Because the kidney filters blood, its network of blood vessels is an important component of its structure and function. The arteries, veins, and nerves that supply the kidney enter and exit at the renal hilum. Renal blood supply starts with the branching of the aorta into the renal arteries (which are each named based on the region of the kidney they pass through) and ends with the exiting of the renal veins to join the inferior vena cava    . The renal arteries split into several segmental arteries upon entering the kidneys. Each segmental artery splits further into several interlobar arteries and enters the renal columns, which supply the renal lobes. The interlobar arteries split at the junction of the renal cortex and medulla to form the arcuate arteries . The arcuate “bow shaped” arteries form arcs along the base of the medullary pyramids. Cortical radiate arteries , as the name suggests, radiate out from the arcuate arteries. The cortical radiate arteries branch into numerous afferent arterioles, and then enter the capillaries supplying the nephrons. Veins trace the path of the arteries and have similar names, except there are no segmental veins.

As mentioned previously, the functional unit of the kidney is the nephron, illustrated in [link] . Each kidney is made up of over one million nephrons that dot the renal cortex, giving it a granular appearance when sectioned sagittally. There are two types of nephrons— cortical nephrons (85 percent), which are deep in the renal cortex, and juxtamedullary nephrons (15 percent), which lie in the renal cortex close to the renal medulla. A nephron consists of three parts—a renal corpuscle    , a renal tubule    , and the associated capillary network, which originates from the cortical radiate arteries.

Art connection

Illustration shows the nephron, a tube-like structure that begins in the kidney cortex. Here, arterioles converge in a bulb-like structure called the glomerulus, which is partly surrounded by a Bowman’s capsule. Afferent arterioles enter the glomerulus, and efferent arterioles leave. The glomerulus empties into the proximal convoluted tubule. A long loop, called the loop of Henle, extends from the proximal convoluted tubule to the inner medulla of the kidney, and then back out to the cortex. There, the loop of Henle joins a distal convoluted tubule. The distal convoluted tubule joins a collecting duct, which travels from the medulla back into the cortex, toward the center of the kidney. Eventually, the contents of the renal pyramid empty into the renal pelvis, and then the ureter.
The nephron is the functional unit of the kidney. The glomerulus and convoluted tubules are located in the kidney cortex, while collecting ducts are located in the pyramids of the medulla. (credit: modification of work by NIDDK)

Which of the following statements about the nephron is false?

  1. The collecting duct empties into the distal convoluted tubule.
  2. The Bowman’s capsule surrounds the glomerulus.
  3. The loop of Henle is between the proximal and distal convoluted tubules.
  4. The loop of Henle empties into the distal convoluted tubule.

Renal corpuscle

The renal corpuscle, located in the renal cortex, is made up of a network of capillaries known as the glomerulus and the capsule, a cup-shaped chamber that surrounds it, called the glomerular or Bowman's capsule    .

Renal tubule

The renal tubule is a long and convoluted structure that emerges from the glomerulus and can be divided into three parts based on function. The first part is called the proximal convoluted tubule (PCT)    due to its proximity to the glomerulus; it stays in the renal cortex. The second part is called the loop of Henle    , or nephritic loop, because it forms a loop (with descending and ascending limbs ) that goes through the renal medulla. The third part of the renal tubule is called the distal convoluted tubule (DCT)    and this part is also restricted to the renal cortex. The DCT, which is the last part of the nephron, connects and empties its contents into collecting ducts that line the medullary pyramids. The collecting ducts amass contents from multiple nephrons and fuse together as they enter the papillae of the renal medulla.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Bmcc 103 - concepts of biology. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11855/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bmcc 103 - concepts of biology' conversation and receive update notifications?

Ask