<< Chapter < Page Chapter >> Page >
Illustration shows a hydra, which has a stalk-like body with tentacles growing out the top. A smaller hydra is budding from the side of the stalk.
Hydra reproduce asexually through budding.

Watch a video of a hydra budding.


Fragmentation is the breaking of the body into two parts with subsequent regeneration. If the animal is capable of fragmentation, and the part is big enough, a separate individual will regrow.

For example, in many sea stars, asexual reproduction is accomplished by fragmentation. [link] illustrates a sea star for which an arm of the individual is broken off and regenerates a new sea star. Fisheries workers have been known to try to kill the sea stars eating their clam or oyster beds by cutting them in half and throwing them back into the ocean. Unfortunately for the workers, the two parts can each regenerate a new half, resulting in twice as many sea stars to prey upon the oysters and clams. Fragmentation also occurs in annelid worms, turbellarians, and poriferans.

 Illustration shows a sea star with one long arm and four very short arms.
Sea stars can reproduce through fragmentation. The large arm, a fragment from another sea star, is developing into a new individual.

Note that in fragmentation, there is generally a noticeable difference in the size of the individuals, whereas in fission, two individuals of approximate size are formed.


Parthenogenesis is a form of asexual reproduction where an egg develops into a complete individual without being fertilized. The resulting offspring can be either haploid or diploid, depending on the process and the species. Parthenogenesis occurs in invertebrates such as water flees, rotifers, aphids, stick insects, some ants, wasps, and bees. Bees use parthenogenesis to produce haploid males (drones) and diploid females (workers). If an egg is fertilized, a queen is produced. The queen bee controls the reproduction of the hive bees to regulate the type of bee produced.

Some vertebrate animals—such as certain reptiles, amphibians, and fish—also reproduce through parthenogenesis. Although more common in plants, parthenogenesis has been observed in animal species that were segregated by sex in terrestrial or marine zoos. Two female Komodo dragons, a hammerhead shark, and a blacktop shark have produced parthenogenic young when the females have been isolated from males.

Sexual reproduction

Sexual reproduction is the combination of (usually haploid) reproductive cells from two individuals to form a third (usually diploid) unique offspring. Sexual reproduction produces offspring with novel combinations of genes. This can be an adaptive advantage in unstable or unpredictable environments. As humans, we are used to thinking of animals as having two separate sexes—male and female—determined at conception. However, in the animal kingdom, there are many variations on this theme.


Hermaphroditism occurs in animals where one individual has both male and female reproductive parts. Invertebrates such as earthworms, slugs, tapeworms and snails, shown in [link] , are often hermaphroditic. Hermaphrodites may self-fertilize or may mate with another of their species, fertilizing each other and both producing offspring. Self fertilization is common in animals that have limited mobility or are not motile, such as barnacles and clams.

Photo shows a land snail.
Many snails are hermaphrodites. When two individuals mate, they can produce up to one hundred eggs each. (credit: Assaf Shtilman)

Sex determination

Mammalian sex determination is determined genetically by the presence of X and Y chromosomes. Individuals homozygous for X (XX) are female and heterozygous individuals (XY) are male. The presence of a Y chromosome causes the development of male characteristics and its absence results in female characteristics. The XY system is also found in some insects and plants.

Avian sex determination is dependent on the presence of Z and W chromosomes. Homozygous for Z (ZZ) results in a male and heterozygous (ZW) results in a female. The W appears to be essential in determining the sex of the individual, similar to the Y chromosome in mammals. Some fish, crustaceans, insects (such as butterflies and moths), and reptiles use this system.

The sex of some species is not determined by genetics but by some aspect of the environment. Sex determination in some crocodiles and turtles, for example, is often dependent on the temperature during critical periods of egg development. This is referred to as environmental sex determination, or more specifically as temperature-dependent sex determination. In many turtles, cooler temperatures during egg incubation produce males and warm temperatures produce females. In some crocodiles, moderate temperatures produce males and both warm and cool temperatures produce females. In some species, sex is both genetic- and temperature-dependent.

Individuals of some species change their sex during their lives, alternating between male and female. If the individual is female first, it is termed protogyny or “first female,” if it is male first, its termed protandry or “first male.” Oysters, for example, are born male, grow, and become female and lay eggs; some oyster species change sex multiple times.

Section summary

Reproduction may be asexual when one individual produces genetically identical offspring, or sexual when the genetic material from two individuals is combined to produce genetically diverse offspring. Asexual reproduction occurs through fission, budding, and fragmentation. Sexual reproduction may mean the joining of sperm and eggs within animals’ bodies or it may mean the release of sperm and eggs into the environment. An individual may be one sex, or both; it may start out as one sex and switch during its life, or it may stay male or female.

Questions & Answers

hi I'm asking a question about HIV infection, can HIV infection transmitted from Mother to unbron child? please help me I So confused.
Khushboy Reply
what is the difference between primary and secondary active transport in detail? I didn't understand the steps in the textbook specifically
Fathima Reply
you are a doctor?
what is the meaning of connective tissue?
Mohammed Reply
what are the characteristics of living things
Owolo Reply
what's the meaning of connective tissue?
Reproduction, adaptation, interaction, movement, growth, respiration, made of cells, responsive to environment (homeostasis), metabolic action (consumption of food converted into energy)
state two most important factors that favour exponential growth of population of a gazelle in a pack
Eliza Reply
what are the two types of electron microscope
Sharlom Reply
light microscope and early microscope
Enzymes are biological catalyst which alter any reaction and protein in nature
Nkoue Reply
Your welcome sir
guyz you enjoying
What is translation and transcription
Transcription is making RNA from DNA. Translation is going from RNA to proteins.
full meaning of RNA and DNA
Nkoue what homeostits means?
Mohammed khalfan, In biology, homeostasis is the state of steady internal, physical, and chemical conditions maintained by living systems.[1] This dynamic state of equilibrium is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid bal
what is the definition of enzymes
Royd Reply
enzymes are biological catalyst that speed up chemical reaction.
What are enzymes?
Enzymes are made of proteins and lower the energy of activation. In other words, they bring things together which helps to lower the amount of energy for a reaction to go forward.
they are catalyses that speeds up chemical reaction.... e.g they break down the food we consume.
These are catalyst that speeds up the chemical reaction.
What is connective tissue?
what homeostits means ?
what is a spirogyra
Talabi Reply
Spirogyra is a filamentous chlorophyte green algae of the order Zygnematales. It is named for the helical or spiral arrangement of the chloroplasts. That is characteristic of the genus. It is commonly found in freshwater habitats. And there are more than 400 species of Spirogyra in the world.
what is the mean of biology
Bello Reply
what is cell
A cell is the smallest living unit.
Hi I'm new in this group can someone please help with the list features shared by plants and charopytes that are not shared with most other eukaryotes
iz a basic units of a living thing?
what is eutrophication
Chinaza Reply
hi.. I'm asking a question about HIV infection.... Can HIV infection transmitted from Mother to unbron child?
Eutrophication is an enrichment of water by nutrient salts that causes structural changes to the ecosystem such as: increased production of algae and aquatic plants, depletion of fish species, general deterioration of water quality and other effects that reduce and preclude use.
Show well labeled diagram of female reproductive organs
Lanlege Reply
phenotype is your big head
Amagiya Reply
The phenotype is the physical appearance or things you can see. Or the traits expressed by ones DNA.
phenotypes are appearance that can be seen and touched
example of phenotype
what is a dichotomous key
Moses Reply
explain the role of
Dichotomous key : Is the key that is use to classify or group an organism base on their common features
an amoeba is what kind of cellular organism?
Mercy Reply
It is a protizoa with bilayer membrane bound organelles. Therefore it is eukaryotic.
what is amoeba
amoeba is a unicellular organisms. Therefore it is made u of only one call.
what is phenotype
amoeba is a unicellular organism with one cell

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?