<< Chapter < Page Chapter >> Page >

Membrane fluidity

The mosaic characteristic of the membrane, described in the fluid mosaic model, helps to illustrate its nature. The integral proteins and lipids exist in the membrane as separate but loosely attached molecules. These resemble the separate, multicolored tiles of a mosaic picture, and they float, moving somewhat with respect to one another. The membrane is not like a balloon, however, that can expand and contract; rather, it is fairly rigid and can burst if penetrated or if a cell takes in too much water. However, because of its mosaic nature, a very fine needle can easily penetrate a plasma membrane without causing it to burst, and the membrane will flow and self-seal when the needle is extracted.

The mosaic characteristics of the membrane explain some but not all of its fluidity. There are two other factors that help maintain this fluid characteristic. One factor is the nature of the phospholipids themselves. In their saturated form, the fatty acids in phospholipid tails are saturated with bound hydrogen atoms. There are no double bonds between adjacent carbon atoms. This results in tails that are relatively straight. In contrast, unsaturated fatty acids do not contain a maximal number of hydrogen atoms, but they do contain some double bonds between adjacent carbon atoms; a double bond results in a bend in the string of carbons of approximately 30 degrees ( [link] ).

Thus, if saturated fatty acids, with their straight tails, are compressed by decreasing temperatures, they press in on each other, making a dense and fairly rigid membrane. If unsaturated fatty acids are compressed, the “kinks” in their tails elbow adjacent phospholipid molecules away, maintaining some space between the phospholipid molecules. This “elbow room” helps to maintain fluidity in the membrane at temperatures at which membranes with saturated fatty acid tails in their phospholipids would “freeze” or solidify. The relative fluidity of the membrane is particularly important in a cold environment. A cold environment tends to compress membranes composed largely of saturated fatty acids, making them less fluid and more susceptible to rupturing. Many organisms (fish are one example) are capable of adapting to cold environments by changing the proportion of unsaturated fatty acids in their membranes in response to the lowering of the temperature.

Visit this site to see animations of the fluidity and mosaic quality of membranes.

Animals have an additional membrane constituent that assists in maintaining fluidity. Cholesterol, which lies alongside the phospholipids in the membrane, tends to dampen the effects of temperature on the membrane. Thus, this lipid functions as a buffer, preventing lower temperatures from inhibiting fluidity and preventing increased temperatures from increasing fluidity too much. Thus, cholesterol extends, in both directions, the range of temperature in which the membrane is appropriately fluid and consequently functional. Cholesterol also serves other functions, such as organizing clusters of transmembrane proteins into lipid rafts.

The Components and Functions of the Plasma Membrane
Component Location
Phospholipid Main fabric of the membrane
Cholesterol Attached between phospholipids and between the two phospholipid layers
Integral proteins (for example, integrins) Embedded within the phospholipid layer(s). May or may not penetrate through both layers
Peripheral proteins On the inner or outer surface of the phospholipid bilayer; not embedded within the phospholipids
Carbohydrates (components of glycoproteins and glycolipids) Generally attached to proteins on the outside membrane layer

Career connection


The variations in peripheral proteins and carbohydrates that affect a cell’s recognition sites are of prime interest in immunology. These changes are taken into consideration in vaccine development. Many infectious diseases, such as smallpox, polio, diphtheria, and tetanus, were conquered by the use of vaccines.

Immunologists are the physicians and scientists who research and develop vaccines, as well as treat and study allergies or other immune problems. Some immunologists study and treat autoimmune problems (diseases in which a person’s immune system attacks his or her own cells or tissues, such as lupus) and immunodeficiencies, whether acquired (such as acquired immunodeficiency syndrome, or AIDS) or hereditary (such as severe combined immunodeficiency, or SCID). Immunologists are called in to help treat organ transplantation patients, who must have their immune systems suppressed so that their bodies will not reject a transplanted organ. Some immunologists work to understand natural immunity and the effects of a person’s environment on it. Others work on questions about how the immune system affects diseases such as cancer. In the past, the importance of having a healthy immune system in preventing cancer was not at all understood.

To work as an immunologist, a PhD or MD is required. In addition, immunologists undertake at least 2–3 years of training in an accredited program and must pass an examination given by the American Board of Allergy and Immunology. Immunologists must possess knowledge of the functions of the human body as they relate to issues beyond immunization, and knowledge of pharmacology and medical technology, such as medications, therapies, test materials, and surgical procedures.

Section summary

The modern understanding of the plasma membrane is referred to as the fluid mosaic model. The plasma membrane is composed of a bilayer of phospholipids, with their hydrophobic, fatty acid tails in contact with each other. The landscape of the membrane is studded with proteins, some of which span the membrane. Some of these proteins serve to transport materials into or out of the cell. Carbohydrates are attached to some of the proteins and lipids on the outward-facing surface of the membrane, forming complexes that function to identify the cell to other cells. The fluid nature of the membrane is due to temperature, the configuration of the fatty acid tails (some kinked by double bonds), the presence of cholesterol embedded in the membrane, and the mosaic nature of the proteins and protein-carbohydrate combinations, which are not firmly fixed in place. Plasma membranes enclose and define the borders of cells, but rather than being a static bag, they are dynamic and constantly in flux.

Questions & Answers

what is anatomy
Mohamed Reply
no idea
Anatomy is the branch of science that deals with the study of internal and external structures of an organism
what are the theory if cells
Julius Reply
What's the function of epiglottis
Ugo Reply
What Is The Other Name For Intestinal Juice?
Justin Reply
what is the largestest planet of the universe
rick Reply
what are the types of cell
Bernard Reply
prokaryotic and eukaryotic
prokaryotic cell and eukaryotic cell
what is the protein found in the blood?
Tobias Reply
what is parasitic movement
Emmanuel Reply
Parasitic movement is a problem for all of us. So is its companion, parasitic tension. Parasitic movement is the excess contraction of muscles that you don't actually need to complete an action.
HW a u
am OK how a u
absorption may simply mean utilization of food in the body
what are eukaryotic cells
Thiza Reply
eukaryotic cells which posses a true nucleus that is the DNA is enclosed and covered by a nuclear membrane
what is the mean of pair of chromosomes
Kazula Reply
23 haploid and 23diploid
how are you studying in this quarantine? .. how are you keeping yourselves motivated?
sivajijadhav @815.com
good morning guyz
tell me if you know what can be used...than reading pls hint me pls 🙏🙏🙏
good, reading all alone is the best for me
what is the important of sex
Aremu Reply
why did human being need sex?
because he/she have feelings
reproduction...to make more
due to active harmon
One important of sex is to reproduce
to ensure the countinuty of life
all of you are right
for sexual satisfaction and birth
what is momentum
Asiya Reply
The strength or force that allows something to continue or grow stronger or faster as time pass
What is Centripetal Force?
centrepital force is the inward force required to keep a body moving with constant speed in a circular path
what is the test for protein
Takii Reply
List four condition necessary for seed germination
Tedeka Reply
water, light, oxygen and temperature
water, oxygen, light temperature
water oxygen light and temperature
sun light, temperature, water, oxygen
water, oxygen, light, tell.
what is anatomy

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?