<< Chapter < Page Chapter >> Page >

Phloem is the second type of vascular tissue; it transports sugars, proteins, and other solutes throughout the plant. Phloem cells are divided into sieve elements (conducting cells) and cells that support the sieve elements. Together, xylem and phloem tissues form the vascular system of plants.

Roots: support for the plant

Roots are not well preserved in the fossil record. Nevertheless, it seems that roots appeared later in evolution than vascular tissue. The development of an extensive network of roots represented a significant new feature of vascular plants. Thin rhizoids attached bryophytes to the substrate, but these rather flimsy filaments did not provide a strong anchor for the plant; neither did they absorb substantial amounts of water and nutrients. In contrast, roots, with their prominent vascular tissue system, transfer water and minerals from the soil to the rest of the plant. The extensive network of roots that penetrates deep into the soil to reach sources of water also stabilizes trees by acting as a ballast or anchor. The majority of roots establish a symbiotic relationship with fungi, forming mycorrhizae, which benefit the plant by greatly increasing the surface area for absorption of water and soil minerals and nutrients.

Leaves, sporophylls, and strobili

A third innovation marks the seedless vascular plants. Accompanying the prominence of the sporophyte and the development of vascular tissue, the appearance of true leaves improved their photosynthetic efficiency. Leaves capture more sunlight with their increased surface area by employing more chloroplasts to trap light energy and convert it to chemical energy, which is then used to fix atmospheric carbon dioxide into carbohydrates. The carbohydrates are exported to the rest of the plant by the conductive cells of phloem tissue.

The existence of two types of morphology suggests that leaves evolved independently in several groups of plants. The first type of leaf is the microphyll    , or “little leaf,” which can be dated to 350 million years ago in the late Silurian. A microphyll is small and has a simple vascular system. A single unbranched vein    —a bundle of vascular tissue made of xylem and phloem—runs through the center of the leaf. Microphylls may have originated from the flattening of lateral branches, or from sporangia that lost their reproductive capabilities. Microphylls are present in the club mosses and probably preceded the development of megaphylls , or “big leaves”, which are larger leaves with a pattern of branching veins. Megaphylls most likely appeared independently several times during the course of evolution. Their complex networks of veins suggest that several branches may have combined into a flattened organ, with the gaps between the branches being filled with photosynthetic tissue.

In addition to photosynthesis, leaves play another role in the life of the plants. Pine cones, mature fronds of ferns, and flowers are all sporophylls —leaves that were modified structurally to bear sporangia. Strobili are cone-like structures that contain sporangia. They are prominent in conifers and are commonly known as pine cones.

Questions & Answers

what is element
Kofi Reply
Structure of water molecule and it's biological significance. .....help guys
Ashly
what is the formula for chemical equetion
Justo Reply
Why mitochondria is called the power house of the congo the bahamas cell
Farrukh Reply
how can I learn this subject?
mascuud Reply
what's microscope?
Mathias Reply
A device used to study a very small specimen thst cannt br seen with the naked eyes for example cells, or microorganisms.
Danisha
what does multi seminar mean
Grace Reply
how many cells on the human
Amar Reply
how is genetic testing?
Nyabuoy
test
Nyuongatdet
which party of an internal leaf which represent organ and tissue
fernando
3 trilleons cells on the human
Jyoti
who many cell are in the human body
Ayasso Reply
what causes coloring of skin variation
Prince Reply
what is your answer
Jonathan Reply
which qn
Randa
what is chemosynthesis
Irene
who many cell are in the human body
Ayasso
there are billion cells in human body
fazeela
what are three stages of mitosis
jerry
they're alot cells in our body
jerry
what are the stages of mitosis
jerry
they are prophez methaphez anaphez. thelophez
fazeela
anyone to explain each of the following,, prophase, metaphase, anaphase and telophase
jerry
what is a filial
Mbah Reply
what is the difference between chlorophyll and photosynthesis
Rahman Reply
Chloe is the green pigment found in green plants while photosynthesis is the process by which plant produce their own food
mary
photosynthesis is the production of food by plant while chlorophyll is the green pigment that is found in chloroplast..
jerry
chrolophyll (green colouring matter in leaves) while photosynthesis (process by which green plants make their own food)
Nakhombi
What isaac life
Farrukh
what are the functions of parts of microscope
Bami Reply
base to provide support
Ian
only base what about the other
Bami
has only one function
Mark
Mirror ... used to reflect light
Irene
outline 2 ideas of Darwinism theory
Fatma Reply
important of protein in plants
Mark Reply
Protein in plants- repair damaged tissues -
Danisha

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask