<< Chapter < Page Chapter >> Page >

Life cycles of sexually reproducing organisms

Fertilization and meiosis alternate in sexual life cycles . What happens between these two events depends on the organism. The process of meiosis reduces the chromosome number by half. Fertilization, the joining of two haploid gametes, restores the diploid condition. There are three main categories of life cycles in multicellular organisms: diploid-dominant    , in which the multicellular diploid stage is the most obvious life stage, such as with most animals including humans; haploid-dominant    , in which the multicellular haploid stage is the most obvious life stage, such as with all fungi and some algae; and alternation of generations    , in which the two stages are apparent to different degrees depending on the group, as with plants and some algae.

Diploid-dominant life cycle

Nearly all animals employ a diploid-dominant life-cycle strategy in which the only haploid cells produced by the organism are the gametes. Early in the development of the embryo, specialized diploid cells, called germ cells    , are produced within the gonads, such as the testes and ovaries. Germ cells are capable of mitosis to perpetuate the cell line and meiosis to produce gametes. Once the haploid gametes are formed, they lose the ability to divide again. There is no multicellular haploid life stage. Fertilization occurs with the fusion of two gametes, usually from different individuals, restoring the diploid state ( [link] ).

This illustration shows the life cycle of animals. Through meiosis, adult males produce haploid (1n) sperm, and adult females produce haploid eggs. Upon fertilization, a diploid (2n) zygote forms, which, through mitosis and cell division, grows into an adult.
In animals, sexually reproducing adults form haploid gametes from diploid germ cells. Fusion of the gametes gives rise to a fertilized egg cell, or zygote. The zygote will undergo multiple rounds of mitosis to produce a multicellular offspring. The germ cells are generated early in the development of the zygote.

Haploid-dominant life cycle

Most fungi and algae employ a life-cycle type in which the “body” of the organism—the ecologically important part of the life cycle—is haploid. The haploid cells that make up the tissues of the dominant multicellular stage are formed by mitosis. During sexual reproduction, specialized haploid cells from two individuals, designated the (+) and (−) mating types, join to form a diploid zygote. The zygote immediately undergoes meiosis to form four haploid cells called spores. Although haploid like the “parents,” these spores contain a new genetic combination from two parents. The spores can remain dormant for various time periods. Eventually, when conditions are conducive, the spores form multicellular haploid structures by many rounds of mitosis ( [link] ).

Art connection

This illustration shows the life cycle of fungi. In fungi, the diploid (2n) zygospore undergoes meiosis to form haploid (1n) spores. Mitosis of the spores occurs to form hyphae. Hyphae can undergo asexual reproduction to form more spores, or they form plus and minus mating types that undergo nuclear fusion to form a zygospore.
Fungi, such as black bread mold ( Rhizopus nigricans ), have haploid-dominant life cycles. The haploid multicellular stage produces specialized haploid cells by mitosis that fuse to form a diploid zygote. The zygote undergoes meiosis to produce haploid spores. Each spore gives rise to a multicellular haploid organism by mitosis. (credit “zygomycota” micrograph: modification of work by “Fanaberka”/Wikimedia Commons)

If a mutation occurs so that a fungus is no longer able to produce a minus mating type, will it still be able to reproduce?

Questions & Answers

Is the "growth and maintenance phase" in a cell's life cycle when cell division is about to occur
Somto Reply
what is the common name of Basidiomycetes
Ogechukwu Reply
الاجزاء النباتية لابد من تعقيمها قبل زراعتها في القوارير
yes
tariq
whats this?
tariq
do you speak arabic?!
what are bio elements
Shahzad Reply
which are present In Body And such elements Have Great role in our Body there are 16 bio elements that maintains human Body but on The basis of amount There are 6 bio elements present in Concen. of 99% and More Valuable And Highly Concen. element is Oxygent with 65 %
Haider
how je pollution brought about
Lamina Reply
how je pollution brouhgt about
Lamina
non is pollution brouhgt about
Lamina
describe the anatomy of cell division
Ivanovic Reply
Complex traits such as height result from 
Ruben Reply
what is the difference between chloroplasts and mitochondria
Nkalubo Reply
chloroplast in plants and bacterial cell ; mitochondria in animal cells
aung
Diagram of a living cell
Eliza Reply
what is cell
Sule
A cell is the smallest basic unit of life.
John
what's biology
Ogochukwu Reply
this is da study of living and non-living thing in an eco-system
Nutty
it is the study of living and non living organism in the ecology
Akufia
I agree with you dat biology is d study of living nd nonliving features
Winner
why do plants store carbohydrates in form of starch and not glucose?
Nutty Reply
Describe the structure of starch?
Nutty
wat is diffusion
Winner
water is life!.. Discuss?
Nutty Reply
why do plants store carbohydrates in form if starch not glucose!
Nutty
study of living thing
Dennis Reply
what is beyond a liveing cell
Raymond
what is biology
Gabriel Reply
d study of living nd non living thing
Winner
what is vasectomy
Evelyn Reply
The surgical removal of d spermduct
Eniola

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask