<< Chapter < Page Chapter >> Page >

Mendel’s model system

Mendel’s seminal work was accomplished using the garden pea, Pisum sativum , to study inheritance. This species naturally self-fertilizes, such that pollen encounters ova within individual flowers. The flower petals remain sealed tightly until after pollination, preventing pollination from other plants. The result is highly inbred, or “true-breeding,” pea plants. These are plants that always produce offspring that look like the parent. By experimenting with true-breeding pea plants, Mendel avoided the appearance of unexpected traits in offspring that might occur if the plants were not true breeding. The garden pea also grows to maturity within one season, meaning that several generations could be evaluated over a relatively short time. Finally, large quantities of garden peas could be cultivated simultaneously, allowing Mendel to conclude that his results did not come about simply by chance.

Mendelian crosses

Mendel performed hybridizations , which involve mating two true-breeding individuals that have different traits. In the pea, which is naturally self-pollinating, this is done by manually transferring pollen from the anther of a mature pea plant of one variety to the stigma of a separate mature pea plant of the second variety. In plants, pollen carries the male gametes (sperm) to the stigma, a sticky organ that traps pollen and allows the sperm to move down the pistil to the female gametes (ova) below. To prevent the pea plant that was receiving pollen from self-fertilizing and confounding his results, Mendel painstakingly removed all of the anthers from the plant’s flowers before they had a chance to mature.

Plants used in first-generation crosses were called P 0    , or parental generation one, plants ( [link] ). Mendel collected the seeds belonging to the P 0 plants that resulted from each cross and grew them the following season. These offspring were called the F 1    , or the first filial ( filial = offspring, daughter or son), generation. Once Mendel examined the characteristics in the F 1 generation of plants, he allowed them to self-fertilize naturally. He then collected and grew the seeds from the F 1 plants to produce the F 2    , or second filial, generation. Mendel’s experiments extended beyond the F 2 generation to the F 3 and F 4 generations, and so on, but it was the ratio of characteristics in the P 0 −F 1 −F 2 generations that were the most intriguing and became the basis for Mendel’s postulates.

The diagram shows a cross between pea plants that are true-breeding for purple flower color and plants true-breeding for white flower color. This cross-fertilization of the P generation resulted in an F_{1} generation with all violet flowers. Self-fertilization of the F_{1} generation resulted in an F_{2} generation that consisted of 705 plants with violet flowers, and 224 plants with white flowers.
In one of his experiments on inheritance patterns, Mendel crossed plants that were true-breeding for violet flower color with plants true-breeding for white flower color (the P generation). The resulting hybrids in the F 1 generation all had violet flowers. In the F 2 generation, approximately three quarters of the plants had violet flowers, and one quarter had white flowers.

Garden pea characteristics revealed the basics of heredity

In his 1865 publication, Mendel reported the results of his crosses involving seven different characteristics, each with two contrasting traits. A trait    is defined as a variation in the physical appearance of a heritable characteristic. The characteristics included plant height, seed texture, seed color, flower color, pea pod size, pea pod color, and flower position. For the characteristic of flower color, for example, the two contrasting traits were white versus violet. To fully examine each characteristic, Mendel generated large numbers of F 1 and F 2 plants, reporting results from 19,959 F 2 plants alone. His findings were consistent.

Questions & Answers

double stranded DNA is found in which viruses?
Deborah Reply
Virusws usually dont hsve double strnaded DNA they have a single strand RNA. U should probably check them in gpogle just to be sure
Danisha
what would happen if humans were not multicellular
Grace Reply
ettr
Grace
sorry but no
Grace
i haven't any things
mascuud
Is there any other type of a eukaryotic cell.
Grace Reply
what is bionomial nomenclature
Rachaelda Reply
state the role of mitochondria
Rachaelda
mitochondria ia power House of the cell. it provides energy and as ATP. Cells energy currency.
Haider
The scientific method of giving short names on the basis of genius and species.
Haider
it is introduce by carlous Lennieus
Haider
it is naming of living organism where by they are given two names one generic and the other specific name
Kenneth
what is element
Kofi Reply
Structure of water molecule and it's biological significance. .....help guys
Ashly
what is the formula for chemical equetion
Justo Reply
Why mitochondria is called the power house of the congo the bahamas cell
Farrukh Reply
how can I learn this subject?
mascuud Reply
what's microscope?
Mathias Reply
A device used to study a very small specimen thst cannt br seen with the naked eyes for example cells, or microorganisms.
Danisha
a medical device used to study cells bacteria viruses and parasites e.g electron microscope for studying cells.
Grace
exactly microscope
Randa
is an instrument use to view microorganisms such as viruses and bacteria
Ohene
it is an instrument used to magnify micro-scopic organism
Kenneth
microscopic
Coster
microscope
Adam
what does multi seminar mean
Grace Reply
many seminars
Grace
how many cells on the human
Amar Reply
how is genetic testing?
Nyabuoy
test
Nyuongatdet
which party of an internal leaf which represent organ and tissue
fernando
3 trilleons cells on the human
Jyoti
name the groups of bacteria, what they cause and explain the components of bacterial cell
Emmanuel
what are the three level of relationship that exist between organism?
Chinedu
trillions of cells
Grace
unicellular
Kenneth
who many cell are in the human body
Ayasso Reply
trillions of cells
Grace
what causes coloring of skin variation
Prince Reply
what is your answer
Jonathan Reply
which qn
Randa
what is chemosynthesis
Irene
who many cell are in the human body
Ayasso
there are billion cells in human body
fazeela
what are three stages of mitosis
jerry
they're alot cells in our body
jerry
what are the stages of mitosis
jerry
they are prophez methaphez anaphez. thelophez
fazeela
anyone to explain each of the following,, prophase, metaphase, anaphase and telophase
jerry
what is a filial
Mbah Reply
denoting the offspring of a cross
Grace

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask