<< Chapter < Page Chapter >> Page >

Prokaryotic promoters

A promoter    is a DNA sequence onto which the transcription machinery binds and initiates transcription. In most cases, promoters exist upstream of the genes they regulate. The specific sequence of a promoter is very important because it determines whether the corresponding gene is transcribed all the time, some of the time, or infrequently. Although promoters vary among prokaryotic genomes, a few elements are conserved. At the -10 and -35 regions upstream of the initiation site, there are two promoter consensus    sequences, or regions that are similar across all promoters and across various bacterial species ( [link] ). The -10 consensus sequence, called the -10 region, is TATAAT. The -35 sequence, TTGACA, is recognized and bound by σ . Once this interaction is made, the subunits of the core enzyme bind to the site. The A–T-rich -10 region facilitates unwinding of the DNA template, and several phosphodiester bonds are made. The transcription initiation phase ends with the production of abortive transcripts, which are polymers of approximately 10 nucleotides that are made and released.

Illustration shows the σ subunit of RNA polymerase bound to two consensus sequences that are 10 and 35 bases upstream of the transcription start site. RNA polymerase is bound to σ.
The σ subunit of prokaryotic RNA polymerase recognizes consensus sequences found in the promoter region upstream of the transcription start sight. The σ subunit dissociates from the polymerase after transcription has been initiated.

View this MolecularMovies animation to see the first part of transcription and the base sequence repetition of the TATA box.

Elongation and termination in prokaryotes

The transcription elongation phase begins with the release of the σ subunit from the polymerase. The dissociation of σ allows the core enzyme to proceed along the DNA template, synthesizing mRNA in the 5' to 3' direction at a rate of approximately 40 nucleotides per second. As elongation proceeds, the DNA is continuously unwound ahead of the core enzyme and rewound behind it ( [link] ). The base pairing between DNA and RNA is not stable enough to maintain the stability of the mRNA synthesis components. Instead, the RNA polymerase acts as a stable linker between the DNA template and the nascent RNA strands to ensure that elongation is not interrupted prematurely.

Illustration shows RNA synthesis by RNA polymerase. The RNA strand is synthesized in the 5' to 3' direction.
During elongation, the prokaryotic RNA polymerase tracks along the DNA template, synthesizes mRNA in the 5' to 3' direction, and unwinds and rewinds the DNA as it is read.

Prokaryotic termination signals

Once a gene is transcribed, the prokaryotic polymerase needs to be instructed to dissociate from the DNA template and liberate the newly made mRNA. Depending on the gene being transcribed, there are two kinds of termination signals. One is protein-based and the other is RNA-based. Rho-dependent termination    is controlled by the rho protein, which tracks along behind the polymerase on the growing mRNA chain. Near the end of the gene, the polymerase encounters a run of G nucleotides on the DNA template and it stalls. As a result, the rho protein collides with the polymerase. The interaction with rho releases the mRNA from the transcription bubble.

Rho-independent termination is controlled by specific sequences in the DNA template strand. As the polymerase nears the end of the gene being transcribed, it encounters a region rich in C–G nucleotides. The mRNA folds back on itself, and the complementary C–G nucleotides bind together. The result is a stable hairpin    that causes the polymerase to stall as soon as it begins to transcribe a region rich in A–T nucleotides. The complementary U–A region of the mRNA transcript forms only a weak interaction with the template DNA. This, coupled with the stalled polymerase, induces enough instability for the core enzyme to break away and liberate the new mRNA transcript.

Upon termination, the process of transcription is complete. By the time termination occurs, the prokaryotic transcript would already have been used to begin synthesis of numerous copies of the encoded protein because these processes can occur concurrently. The unification of transcription, translation, and even mRNA degradation is possible because all of these processes occur in the same 5' to 3' direction, and because there is no membranous compartmentalization in the prokaryotic cell ( [link] ). In contrast, the presence of a nucleus in eukaryotic cells precludes simultaneous transcription and translation.

Illustration shows multiple mRNAs transcribed off one gene. Ribosomes attach to the mRNA before transcription is complete and begin to make protein.
Multiple polymerases can transcribe a single bacterial gene while numerous ribosomes concurrently translate the mRNA transcripts into polypeptides. In this way, a specific protein can rapidly reach a high concentration in the bacterial cell.

Visit this BioStudio animation to see the process of prokaryotic transcription.

Section summary

In prokaryotes, mRNA synthesis is initiated at a promoter sequence on the DNA template comprising two consensus sequences that recruit RNA polymerase. The prokaryotic polymerase consists of a core enzyme of four protein subunits and a σ protein that assists only with initiation. Elongation synthesizes mRNA in the 5' to 3' direction at a rate of 40 nucleotides per second. Termination liberates the mRNA and occurs either by rho protein interaction or by the formation of an mRNA hairpin.

Questions & Answers

What are other types of cell
ATAMA Reply
plant and animal cell
Jessy
prokaryotic and eukaryotic cell
Joneth
meaning inside and outside cells
Joneth
external feature of earthworm
Ajas Reply
what is the reason behind that before F2 generation is no segregation?
asmamaw Reply
what is mitosis and meiosis
Rabiu Reply
hypothesis theory law
Tamba Reply
what is hypothesis theory law
Tamba
Briefly describe the process of mitosis and meiosis.
Lilian Reply
what is chromosome
Deborah Reply
Chromosome is the thread-like structure containing DNA and found in the nucleus of a cell. DNA contains gene which has genetic information.
Lilian
if a cell is killed by strain why then is it use
uchenna Reply
what is an atom
Finda Reply
an atom is the must smallest element in the world.
Young
please help me friends. I wont a good example of lab report based on carbohydrate,lipid,reducing and non reducing sugar.
Ng
that can't be split by any chemical means
uchenna
No an atom is the smallest particles of an element which can take part in a chemical reaction
Solayemi
An atom is the smallest indivisible particle of an element which can take part in a chemical reaction.
Samuel
sure atoms can't be splited
Solayemi
atom can't be split
john
what is molecule
john
Molecules consists of one or more tiny particles called atom
Rofiah
atoms joined together by covalent bonds
Bad
an atom is a particle that cannot be divided further by a chemical reaction
Bad
how do earthworms excrete
Ndlovu
what is genotype
Precious Reply
What is the difference between longitudinal section and vertical section
dela Reply
what is a cell
Young Reply
A cell is the basic unit of Life
Sondja
And what is life...?
ShAmy
it's being.
ernest
how many layers does the eye have
Gift
Three
Winifred
Cell is the basic unit of life
dela
what is virus
Khalid
building block of life
Stanisla
what is diffusion
Precious
excretory system of earthworm
Okotiti Reply
what is flaccidity
Joshua Reply
a condition of composure in respective to the object
Gula
variety of organisms
Abdulkudusi Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask