<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the way in which carbohydrate metabolic pathways, glycolysis, and the citric acid cycle interrelate with protein and lipid metabolic pathways
  • Explain why metabolic pathways are not considered closed systems

You have learned about the catabolism of glucose, which provides energy to living cells. But living things consume more than just glucose for food. How does a turkey sandwich, which contains protein, provide energy to your cells? This happens because all of the catabolic pathways for carbohydrates, proteins, and lipids eventually connect into glycolysis and the citric acid cycle pathways ( [link] ). Metabolic pathways should be thought of as porous—that is, substances enter from other pathways, and other substances leave for other pathways. These pathways are not closed systems. Many of the products in a particular pathway are reactants in other pathways.

Connections of other sugars to glucose metabolism

Glycogen, a polymer of glucose, is a short-term energy storage molecule in animals. When there is adequate ATP present, excess glucose is converted into glycogen for storage. Glycogen is made and stored in the liver and muscle. Glycogen will be taken out of storage if blood sugar levels drop. The presence of glycogen in muscle cells as a source of glucose allows ATP to be produced for a longer time during exercise.

Sucrose is a disaccharide made from glucose and fructose bonded together. Sucrose is broken down in the small intestine, and the glucose and fructose are absorbed separately. Fructose is one of the three dietary monosaccharides, along with glucose and galactose (which is part of milk sugar, the disaccharide lactose), that are absorbed directly into the bloodstream during digestion. The catabolism of both fructose and galactose produces the same number of ATP molecules as glucose.

Connections of proteins to glucose metabolism

Proteins are broken down by a variety of enzymes in cells. Most of the time, amino acids are recycled into new proteins. If there are excess amino acids, however, or if the body is in a state of famine, some amino acids will be shunted into pathways of glucose catabolism. Each amino acid must have its amino group removed prior to entry into these pathways. The amino group is converted into ammonia. In mammals, the liver synthesizes urea from two ammonia molecules and a carbon dioxide molecule. Thus, urea is the principal waste product in mammals from the nitrogen originating in amino acids, and it leaves the body in urine.

Connections of lipids to glucose metabolism

The lipids that are connected to the glucose pathways are cholesterol and triglycerides. Cholesterol is a lipid that contributes to cell membrane flexibility and is a precursor of steroid hormones. The synthesis of cholesterol starts with acetyl CoA and proceeds in only one direction. The process cannot be reversed, and ATP is not produced.

Triglycerides are a form of long-term energy storage in animals. Triglycerides store about twice as much energy as carbohydrates. Triglycerides are made of glycerol and three fatty acids. Animals can make most of the fatty acids they need. Triglycerides can be both made and broken down through parts of the glucose catabolism pathways. Glycerol can be phosphorylated and proceeds through glycolysis. Fatty acids are broken into two-carbon units that enter the citric acid cycle.

This illustration shows that glycogen, fats, and proteins can be catabolized via aerobic respiration. Glycogen is broken down into glucose, which feeds into glycolysis. Fats are broken down into glycerol, which is processed by glycolysis, and fatty acids, which are converted into acetyl CoA. Proteins are broken down into amino acids, which are processed at various stages of aerobic respiration, including glycolysis, acetyl CoA formation, and the citric acid cycle.
Glycogen from the liver and muscles, together with fats, can feed into the catabolic pathways for carbohydrates.

Evolution in action

Pathways of photosynthesis and cellular metabolism

Photosynthesis and cellular metabolism consist of several very complex pathways. It is generally thought that the first cells arose in an aqueous environment—a “soup” of nutrients. If these cells reproduced successfully and their numbers climbed steadily, it follows that the cells would begin to deplete the nutrients from the medium in which they lived, as they shifted the nutrients into their own cells. This hypothetical situation would have resulted in natural selection favoring those organisms that could exist by using the nutrients that remained in their environment and by manipulating these nutrients into materials that they could use to survive. Additionally, selection would favor those organisms that could extract maximal value from the available nutrients.

An early form of photosynthesis developed that harnessed the sun’s energy using compounds other than water as a source of hydrogen atoms, but this pathway did not produce free oxygen. It is thought that glycolysis developed prior to this time and could take advantage of simple sugars being produced, but these reactions were not able to fully extract the energy stored in the carbohydrates. A later form of photosynthesis used water as a source of hydrogen ions and generated free oxygen. Over time, the atmosphere became oxygenated. Living things adapted to exploit this new atmosphere and allowed respiration as we know it to evolve. When the full process of photosynthesis as we know it developed and the atmosphere became oxygenated, cells were finally able to use the oxygen expelled by photosynthesis to extract more energy from the sugar molecules using the citric acid cycle.

Section summary

The breakdown and synthesis of carbohydrates, proteins, and lipids connect with the pathways of glucose catabolism. The carbohydrates that can also feed into glucose catabolism include galactose, fructose, and glycogen. These connect with glycolysis. The amino acids from proteins connect with glucose catabolism through pyruvate, acetyl CoA, and components of the citric acid cycle. Cholesterol synthesis starts with acetyl CoA, and the components of triglycerides are picked up by acetyl CoA and enter the citric acid cycle.

Questions & Answers

difference between DNA and RNA
Eyitayo Reply
DNA is deoxyribonuclaic acid. Deoxy refers to a lack of oxygen. The Ribose moity is missing an OH group. I think it is missing from the second C of the ring. RNA is ribonucleic acid. DNA has our genetic code in on it. RNA is translated from DNA and carries the blue print for protein synthesis.
The OH group on RNA prevents it from being reactive. But it is very unstable though. Would you want such a power tool floating around in your body, no. And you have three types of RNA: mRNA, tRNA and rRNA. Please let me know it this helped?😄
what determines the aeration level in the soil
Shola Reply
what is homeostasis?
Sarita Reply
What is biology
Don Reply
Biology z the study of life
what's biology
biology is the study of living nd none living organism
Biology is the study of life
yes Sir
what's cell biology
biology is the study of life
what is asexual reproduction,?
Awoi Reply
A type of reproduction which does not involve the fusion of gametes or a change in the number of chromosomes
Reproduction without sex... In which form a single organism or cell makes a copy of itself.
Please explain the concept of mitosis and meiosis
I guess you could use it for study buddies and brushing up on what you need to
what is mitosis
Asexual reproduction?
why pepsin and trypsin released in active form?
mitosis is the type cell division in which two daughter cells have same no. of chormosomes
chromosome number remains the same in mitosis
Yrr help me.
Physical chemistry..... Koi h jo mujhe physical chem ki notes send kr ske
what is asexual reproduction
what makes golgi body in plants
Abdulkareem Reply
name the membrane of the plants
how can turners syndrome be corrected before birth
which animal survive from being preyed just because of being humble, slow, and not aggressive
Plants have golgi body's also. Plants are eukaryotic cells. And membrane bound organelles are a characteristic of eukaryotic cells. Moreover golgi body's are creatted from the ER. Also do not forget plants have plastids and animal cells do not.
During organs transplantation, the organs cannot be taken from just anybody since the graft would be rejected sooner or later due to
Liter Reply
Non-MHC compatibility on the organ and an attack from the patient's immune system.
what makes golgi body in plants
why trypsin and pepsin released in active form
Let us remember MHC'S on our cells. This is how our cells determine self from n o n s e l f. Transplanted tissue has to have a certain amount markers. These have to match to the recipiant's markers. Even with this, immunosuppresant medacine is prescribed to the recipient.
Even with these measures the body may still reject the transport. This can occur even after the recipient excepting the transport for some time.
what is integument system
Joy Reply
This system is our skin. This includes the skin lining our alimentary system which includes the tissue from our mouth to our anus. Our skin is our largest organ system. It is mostly made up of epithelial tissue.
Cellular respiration
Lucy Reply
This is how our cells make energy. They use glucose + oxygen. There are other facors involves also. But these are the main two reactant used, for aerobic respiration. The main product is ATP. ATP is a high energy molecule which is paramount for life.
what are the characteristics of living things
Ruth Reply
Movement Respiration Nutrition/Feeding Irritability/Sensitivity Growth Excretion Reproduction Deat/Life span
What makes children from the same father and mother sometimes don't look alike?
One of the main one's is the abilit reproduce. That is why viruses are not considered living. Because they do not have the ability to replicate on they own.
identification of problems
Nana Reply
what happens in the process of raising the human arms
what is biology
Brandi Reply
first step in scientific method
The study of living things.
In an investigation the pancreatic duct of a mammal was blocked.It was found that the blood sugar regulation remained normal while food digestion was impaired.Explain
Mac Reply
To begin with, obstruction of pancreatic duct will alter the blood sugar level as the juices responsible for glucose regulation will be rendered inconsequential. This will in turn affect the rate of digestion and absorbtion of digested food substances by the Villus .
characteristics of algae
Algae are eukaryotic organisms. Algae do not have roots and stems. Algae have chlorophyll and helps in carrying out photosynthesis.
Cell wall is the rigid layer enclosed by membranes of plants and prokayortic cell, it maintains the shape of the cell and serve as a protective barrier.
chizoba Reply
ECOLOGY: is a branch of biology that studies the interactions among organisms and their biophysical environment, which includes both biotic and abiotic components. 
via nutrient cycles and energy flows. For instance, the energy from the sun is captured by plants through photosynthesis. Photosynthesis is a biological process through which plants manufacture their own food with the aid of light from the sun and frc sources (e.g. cabon dioxide and water)
Gram + cells do not have an outer membrane.

Get the best Concepts of biology course in your pocket!

Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?