<< Chapter < Page Chapter >> Page >

Review the process of meiosis, observing how chromosomes align and migrate, at Meiosis: An Interactive Animation .

Meiosis ii

In some species, cells enter a brief interphase, or interkinesis    , before entering meiosis II. Interkinesis lacks an S phase, so chromosomes are not duplicated. The two cells produced in meiosis I go through the events of meiosis II in synchrony. During meiosis II, the sister chromatids within the two daughter cells separate, forming four new haploid gametes. The mechanics of meiosis II is similar to mitosis, except that each dividing cell has only one set of homologous chromosomes. Therefore, each cell has half the number of sister chromatids to separate out as a diploid cell undergoing mitosis.

Prophase ii

If the chromosomes decondensed in telophase I, they condense again. If nuclear envelopes were formed, they fragment into vesicles. The centrosomes that were duplicated during interkinesis move away from each other toward opposite poles, and new spindles are formed.

Prometaphase ii

The nuclear envelopes are completely broken down, and the spindle is fully formed. Each sister chromatid forms an individual kinetochore that attaches to microtubules from opposite poles.

Metaphase ii

The sister chromatids are maximally condensed and aligned at the equator of the cell.

Anaphase ii

The sister chromatids are pulled apart by the kinetochore microtubules and move toward opposite poles. Non-kinetochore microtubules elongate the cell.

This illustration compares chromosome alignment in meiosis I and meiosis II. In prometaphase I, homologous pairs of chromosomes are held together by chiasmata. In anaphase I, the homologous pair separates and the connections at the chiasmata are broken, but the sister chromatids remain attached at the centromere. In prometaphase II, the sister chromatids are held together at the centromere. In anaphase II, the centromere connections are broken and the sister chromatids separate.
The process of chromosome alignment differs between meiosis I and meiosis II. In prometaphase I, microtubules attach to the fused kinetochores of homologous chromosomes, and the homologous chromosomes are arranged at the midpoint of the cell in metaphase I. In anaphase I, the homologous chromosomes are separated. In prometaphase II, microtubules attach to the kinetochores of sister chromatids, and the sister chromatids are arranged at the midpoint of the cells in metaphase II. In anaphase II, the sister chromatids are separated.

Telophase ii and cytokinesis

The chromosomes arrive at opposite poles and begin to decondense. Nuclear envelopes form around the chromosomes. Cytokinesis separates the two cells into four unique haploid cells. At this point, the newly formed nuclei are both haploid. The cells produced are genetically unique because of the random assortment of paternal and maternal homologs and because of the recombining of maternal and paternal segments of chromosomes (with their sets of genes) that occurs during crossover. The entire process of meiosis is outlined in [link] .

This illustration outlines the stages of meiosis. In interphase, before meiosis begins, the chromosomes are duplicated. Meiosis I then proceeds through several stages. In prophase I, the chromosomes begin to condense and the nuclear envelope fragments. Homologous pairs of chromosomes line up, and chiasmata form between them. Crossing over occurs at the chiasmata. Spindle fibers emerge from the centrosomes. In prometaphase I, homologous chromosomes attach to the spindle microtubules. In metaphase I, homologous chromosomes line up at the metaphase plate. In anaphase I, the spindle microtubules pull the homologous pairs of chromosomes apart. In telophase I and cytokinesis, the sister chromatids arrive at the poles of the cell and begin to decondense. The nuclear envelope begins to form again, and cell division occurs. Meiosis II then proceeds through several stages. In prophase II, the sister chromatids condense and the nuclear envelope fragments. A new spindle begins to form. In prometaphase II, the sister chromatids become attached to the kinetochore. In metaphase II, the sister chromatids line up at the metaphase plate. In anaphase II, the sister chromatids are pulled apart by the shortening spindles. In telophase II and cytokinesis, the nuclear envelope forms again and cell division occurs, resulting in four haploid daughter cells.
An animal cell with a diploid number of four (2 n = 4) proceeds through the stages of meiosis to form four haploid daughter cells.

Comparing meiosis and mitosis

Mitosis and meiosis are both forms of division of the nucleus in eukaryotic cells. They share some similarities, but also exhibit distinct differences that lead to very different outcomes ( [link] ). Mitosis is a single nuclear division that results in two nuclei that are usually partitioned into two new cells. The nuclei resulting from a mitotic division are genetically identical to the original nucleus. They have the same number of sets of chromosomes, one set in the case of haploid cells and two sets in the case of diploid cells. In most plants and all animal species, it is typically diploid cells that undergo mitosis to form new diploid cells. In contrast, meiosis consists of two nuclear divisions resulting in four nuclei that are usually partitioned into four new cells. The nuclei resulting from meiosis are not genetically identical and they contain one chromosome set only. This is half the number of chromosome sets in the original cell, which is diploid.

Questions & Answers

importance of biology
Alabina Reply
importance of boilogy
Alabina
what is soil
Amina Reply
soil is the upper part of the earth
Alabina
what is importance of studying biology
Alabina
differences between euglenoid and amoeboid
Grace Reply
what are the difference between aerobic and anaerobic respiration?
Maxwell Reply
Aerobic respiration involves the use of oxygen whiles anaerobic respiration does not involve the use of oxygen
Quabena
what is assmilation
Lucy Reply
what is cell
Manish Reply
cell is the structural and functional unit of life or living things
hamid
where anaerobic respiration occurre?
Manish
in cell
Manish
in cells?
Manish
where anaerobic respiration occurre in cell?
Manish
what's phloem?
Gift Reply
what is different between Latin name and common names
mary Reply
hey
Gift
what's enzyme
Gift
what structure help root hair cells to take up water.
Jackson Reply
which two part of a plant cell are affected when the is immersed in sucrose solution?
Jackson
which two part of a plant cell are affected when the is immersed in sucrose solution?
Jackson
the xylem cells absorbs water and mineral salt from the soil to all part of the plant.
Nana
And the phloem cell take up food prepared from the leaves to all part of the plant
Nana
what is genetic engineering
Mavis Reply
what are the three main type of ecosystem
Mavis
biosphere,
Bigenis
biosphere
Adeniyi
where anaerobic respiration occur?
Manish
what is mitochondria
Might Reply
please what's genetics erngee
Abanke Reply
what is genetic engineering
Eveline Reply
what is the meaning of term mitosis
Lwitiko Reply
outline the significance of mitosis to organisms
Lwitiko
significant of meiosis are to increase in variation and leads to the formation of haploid gamete
Eveline
thanks
Abanke
name the resources to be conserved
Oreva Reply
define natural resources
Oreva
name the agencies responsible for the conservation of natural resources
Oreva
land,water,forests,
Kiiza
nema,uwa
Kiiza
wassup guyz
Peace
land ,water
Erika
Good Land and Water
garnhial
food, fish, livelihoods,forest, land and water
garnhial

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask