<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the overall result in terms of molecules produced in the breakdown of glucose by glycolysis
  • Compare the output of glycolysis in terms of ATP molecules and NADH molecules produced

You have read that nearly all of the energy used by living cells comes to them in the bonds of the sugar, glucose. Glycolysis is the first step in the breakdown of glucose to extract energy for cellular metabolism. Nearly all living organisms carry out glycolysis as part of their metabolism. The process does not use oxygen and is therefore anaerobic    . Glycolysis takes place in the cytoplasm of both prokaryotic and eukaryotic cells. Glucose enters heterotrophic cells in two ways. One method is through secondary active transport in which the transport takes place against the glucose concentration gradient. The other mechanism uses a group of integral proteins called GLUT proteins, also known as glucose transporter proteins. These transporters assist in the facilitated diffusion of glucose.

Glycolysis begins with the six carbon ring-shaped structure of a single glucose molecule and ends with two molecules of a three-carbon sugar called pyruvate    . Glycolysis consists of two distinct phases. The first part of the glycolysis pathway traps the glucose molecule in the cell and uses energy to modify it so that the six-carbon sugar molecule can be split evenly into the two three-carbon molecules. The second part of glycolysis extracts energy from the molecules and stores it in the form of ATP and NADH, the reduced form of NAD.

First half of glycolysis (energy-requiring steps)

Step 1. The first step in glycolysis ( [link] ) is catalyzed by hexokinase, an enzyme with broad specificity that catalyzes the phosphorylation of six-carbon sugars. Hexokinase phosphorylates glucose using ATP as the source of the phosphate, producing glucose-6-phosphate, a more reactive form of glucose. This reaction prevents the phosphorylated glucose molecule from continuing to interact with the GLUT proteins, and it can no longer leave the cell because the negatively charged phosphate will not allow it to cross the hydrophobic interior of the plasma membrane.

Step 2. In the second step of glycolysis, an isomerase converts glucose-6-phosphate into one of its isomers, fructose-6-phosphate. An isomerase    is an enzyme that catalyzes the conversion of a molecule into one of its isomers. (This change from phosphoglucose to phosphofructose allows the eventual split of the sugar into two three-carbon molecules.).

Step 3. The third step is the phosphorylation of fructose-6-phosphate, catalyzed by the enzyme phosphofructokinase. A second ATP molecule donates a high-energy phosphate to fructose-6-phosphate, producing fructose-1,6- bi sphosphate. In this pathway, phosphofructokinase is a rate-limiting enzyme. It is active when the concentration of ADP is high; it is less active when ADP levels are low and the concentration of ATP is high. Thus, if there is “sufficient” ATP in the system, the pathway slows down. This is a type of end product inhibition, since ATP is the end product of glucose catabolism.

Questions & Answers

Which of the following statements regarding membrane transport is false? 1. Glucose is transported only by facilitated diffusion 2.Each protein carrier will only bind and b transport one type of solute.
#2. Each protein carrier will only bind and b transport one type of soluble
Only
#2 is false for the regarding membrane transport.
Only
Tanks a lot
Thanks a lot
what is gene
Okello Reply
what is somatic cell
garaadmaxamed Reply
what is Biology?
garaadmaxamed
is the study of living things
garaadmaxamed
what is biology
Isiaka Reply
is the study of all living things
Motinga
and their interactions with each other and the environment
Angela
it is the study of all living organisms and their characteristics
ketchem
the study of living things and their surroundings
Ade
what's is biology
Mohamed Reply
what's is dna
Mohamed
deoxybonucliec acid
Gibril
explain the osomor regulations in amoeba and paramecium
Adannaya Reply
explain the osimoregulation in man
Adannaya
who can explain the osmoregulation in amoeba and in man
Adannaya
Hello how are you every body
Sitali Reply
join the conversation
Sitali
l am fine every body
Memiru
I'm very fine_hopefully everyone is fine
Rorisang
what is meant by submicroscopic?
anji Reply
what is anabolic and catabolic
Jonathan
hi
Alpha
hi berther
Memiru
hallo
Memiru
what is the meaning of biology
Dorathy Reply
biology is scientific study of living things
GUYO
what is chromosomes?
Mabiya Reply
it is a cell structure that contains DNA histones protein and other structural proteins
Ekechi
what is DNA
Kashah
what is liver
Hassan Reply
liver is an organ in the body that meterbolise nutrients and produce bile.
Ekechi
what is the function of granum?
Gulfam
what is the faction of liver cancer
Kashah
What is biology
Eric Reply
Biology is you
muayad
Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and. evolution
Suzette
biology is the study of living things and none living things
Ekechi
study of living organisms
anji
The mamalian endoskeleton has 206 bones
kaazim Reply
hii
Hannah
hi
Suzette
how you
Hannah
good thanks
Suzette
have you done the actual course?
Suzette
How many bones do human body have?
moses Reply
I don't know please help me
Kisito
206
Waneh
206
Moses
206
anji
what are these geneti materials
ONELIA Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask