<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe physical and chemical immune barriers
  • Explain immediate and induced innate immune responses
  • Discuss natural killer cells
  • Describe major histocompatibility class I molecules
  • Summarize how the proteins in a complement system function to destroy extracellular pathogens

The immune system comprises both innate and adaptive immune responses. Innate immunity occurs naturally because of genetic factors or physiology; it is not induced by infection or vaccination but works to reduce the workload for the adaptive immune response. Both the innate and adaptive levels of the immune response involve secreted proteins, receptor-mediated signaling, and intricate cell-to-cell communication. The innate immune system developed early in animal evolution, roughly a billion years ago, as an essential response to infection. Innate immunity has a limited number of specific targets: any pathogenic threat triggers a consistent sequence of events that can identify the type of pathogen and either clear the infection independently or mobilize a highly specialized adaptive immune response. For example, tears and mucus secretions contain microbicidal factors.

Physical and chemical barriers

Before any immune factors are triggered, the skin functions as a continuous, impassable barrier to potentially infectious pathogens. Pathogens are killed or inactivated on the skin by desiccation (drying out) and by the skin’s acidity. In addition, beneficial microorganisms that coexist on the skin compete with invading pathogens, preventing infection. Regions of the body that are not protected by skin (such as the eyes and mucus membranes) have alternative methods of defense, such as tears and mucus secretions that trap and rinse away pathogens, and cilia in the nasal passages and respiratory tract that push the mucus with the pathogens out of the body. Throughout the body are other defenses, such as the low pH of the stomach (which inhibits the growth of pathogens), blood proteins that bind and disrupt bacterial cell membranes, and the process of urination (which flushes pathogens from the urinary tract).

Despite these barriers, pathogens may enter the body through skin abrasions or punctures, or by collecting on mucosal surfaces in large numbers that overcome the mucus or cilia. Some pathogens have evolved specific mechanisms that allow them to overcome physical and chemical barriers. When pathogens do enter the body, the innate immune system responds with inflammation, pathogen engulfment, and secretion of immune factors and proteins.

Pathogen recognition

An infection may be intracellular or extracellular, depending on the pathogen. All viruses infect cells and replicate within those cells (intracellularly), whereas bacteria and other parasites may replicate intracellularly or extracellularly, depending on the species. The innate immune system must respond accordingly: by identifying the extracellular pathogen and/or by identifying host cells that have already been infected. When a pathogen enters the body, cells in the blood and lymph detect the specific pathogen-associated molecular patterns (PAMPs) on the pathogen’s surface. PAMPs are carbohydrate, polypeptide, and nucleic acid “signatures” that are expressed by viruses, bacteria, and parasites but which differ from molecules on host cells. The immune system has specific cells, described in [link] and shown in [link] , with receptors that recognize these PAMPs. A macrophage    is a large phagocytic cell that engulfs foreign particles and pathogens. Macrophages recognize PAMPs via complementary pattern recognition receptors (PRRs) . PRRs are molecules on macrophages and dendritic cells which are in contact with the external environment. A monocyte    is a type of white blood cell that circulates in the blood and lymph and differentiates into macrophages after it moves into infected tissue. Dendritic cells bind molecular signatures of pathogens and promote pathogen engulfment and destruction. Toll-like receptors (TLRs) are a type of PRR that recognizes molecules that are shared by pathogens but distinguishable from host molecules). TLRs are present in invertebrates as well as vertebrates, and appear to be one of the most ancient components of the immune system. TLRs have also been identified in the mammalian nervous system.

Questions & Answers

what are the two types of electron microscope
Sharlom Reply
light microscope and early microscope
Sama
Enzymes are biological catalyst which alter any reaction and protein in nature
Nkoue Reply
Thanks
Gaudi
Your welcome sir
Nkoue
guyz you enjoying
Royd
What is translation and transcription
Nkoue
Transcription is making RNA from DNA. Translation is going from RNA to proteins.
Eric
what is the definition of enzymes
Royd Reply
enzymes are biological catalyst that speed up chemical reaction.
Alale
What are enzymes?
Gaudi
Enzymes are made of proteins and lower the energy of activation. In other words, they bring things together which helps to lower the amount of energy for a reaction to go forward.
Eric
they are catalyses that speeds up chemical reaction.... e.g they break down the food we consume.
Azeez
what is a spirogyra
Talabi Reply
Spirogyra is a filamentous chlorophyte green algae of the order Zygnematales. It is named for the helical or spiral arrangement of the chloroplasts. That is characteristic of the genus. It is commonly found in freshwater habitats. And there are more than 400 species of Spirogyra in the world.
Eric
what is the mean of biology
Bello Reply
what is cell
Bello
A cell is the smallest living unit.
Eric
Hi I'm new in this group can someone please help with the list features shared by plants and charopytes that are not shared with most other eukaryotes
Wendy
what is eutrophication
Chinaza Reply
Show well labeled diagram of female reproductive organs
Lanlege Reply
phenotype is your big head
Amagiya Reply
The phenotype is the physical appearance or things you can see. Or the traits expressed by ones DNA.
Eric
phenotypes are appearance that can be seen and touched
Chidera
what is a dichotomous key
Moses Reply
explain the role of
Moses
Dichotomous key : Is the key that is use to classify or group an organism base on their common features
Alale
an amoeba is what kind of cellular organism?
Mercy Reply
It is a protizoa with bilayer membrane bound organelles. Therefore it is eukaryotic.
Eric
what is amoeba
Muhammad
amoeba is a unicellular organisms. Therefore it is made u of only one call.
Alale
what is phenotype
Muhammad
amoeba is a unicellular organism with one cell
Chinaza
name ten equipments found in soil science laboratory and their uses
AFANU Reply
daigram of connective tissue
Yunusa Reply
what is polarization
Finda Reply
in the concept of science, polarization involves light, radiation, magnetism moving in specific directions
Chidera
What is appendicular
GLORIA Reply
relating to or denoting an appendage or appendages.
Eric
Homeostasis definition
Ben Reply
can be defined as a steady of internal environment
Aliyu
MMMM!!!
Kaole
🙄
Aliyu
:-)
Kaole

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask