<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe physical and chemical immune barriers
  • Explain immediate and induced innate immune responses
  • Discuss natural killer cells
  • Describe major histocompatibility class I molecules
  • Summarize how the proteins in a complement system function to destroy extracellular pathogens

The immune system comprises both innate and adaptive immune responses. Innate immunity occurs naturally because of genetic factors or physiology; it is not induced by infection or vaccination but works to reduce the workload for the adaptive immune response. Both the innate and adaptive levels of the immune response involve secreted proteins, receptor-mediated signaling, and intricate cell-to-cell communication. The innate immune system developed early in animal evolution, roughly a billion years ago, as an essential response to infection. Innate immunity has a limited number of specific targets: any pathogenic threat triggers a consistent sequence of events that can identify the type of pathogen and either clear the infection independently or mobilize a highly specialized adaptive immune response. For example, tears and mucus secretions contain microbicidal factors.

Physical and chemical barriers

Before any immune factors are triggered, the skin functions as a continuous, impassable barrier to potentially infectious pathogens. Pathogens are killed or inactivated on the skin by desiccation (drying out) and by the skin’s acidity. In addition, beneficial microorganisms that coexist on the skin compete with invading pathogens, preventing infection. Regions of the body that are not protected by skin (such as the eyes and mucus membranes) have alternative methods of defense, such as tears and mucus secretions that trap and rinse away pathogens, and cilia in the nasal passages and respiratory tract that push the mucus with the pathogens out of the body. Throughout the body are other defenses, such as the low pH of the stomach (which inhibits the growth of pathogens), blood proteins that bind and disrupt bacterial cell membranes, and the process of urination (which flushes pathogens from the urinary tract).

Despite these barriers, pathogens may enter the body through skin abrasions or punctures, or by collecting on mucosal surfaces in large numbers that overcome the mucus or cilia. Some pathogens have evolved specific mechanisms that allow them to overcome physical and chemical barriers. When pathogens do enter the body, the innate immune system responds with inflammation, pathogen engulfment, and secretion of immune factors and proteins.

Pathogen recognition

An infection may be intracellular or extracellular, depending on the pathogen. All viruses infect cells and replicate within those cells (intracellularly), whereas bacteria and other parasites may replicate intracellularly or extracellularly, depending on the species. The innate immune system must respond accordingly: by identifying the extracellular pathogen and/or by identifying host cells that have already been infected. When a pathogen enters the body, cells in the blood and lymph detect the specific pathogen-associated molecular patterns (PAMPs) on the pathogen’s surface. PAMPs are carbohydrate, polypeptide, and nucleic acid “signatures” that are expressed by viruses, bacteria, and parasites but which differ from molecules on host cells. The immune system has specific cells, described in [link] and shown in [link] , with receptors that recognize these PAMPs. A macrophage    is a large phagocytic cell that engulfs foreign particles and pathogens. Macrophages recognize PAMPs via complementary pattern recognition receptors (PRRs) . PRRs are molecules on macrophages and dendritic cells which are in contact with the external environment. A monocyte    is a type of white blood cell that circulates in the blood and lymph and differentiates into macrophages after it moves into infected tissue. Dendritic cells bind molecular signatures of pathogens and promote pathogen engulfment and destruction. Toll-like receptors (TLRs) are a type of PRR that recognizes molecules that are shared by pathogens but distinguishable from host molecules). TLRs are present in invertebrates as well as vertebrates, and appear to be one of the most ancient components of the immune system. TLRs have also been identified in the mammalian nervous system.

Questions & Answers

What is Staining?
Fazal Reply
what is biology
PEACE Reply
Biology is the study of life
Tijani
what is biology
Ysabella Reply
biology is a study of living things
PEACE
Biology is a diverse branch of science that deals with mostly living things
Emmanuel
yes
Swapnil
What happen when inhibit the transcription?
Swapnil
what is the effect of not doing sexual intercourse
SUZAN Reply
what is the mechanism of cellular respiration
Rita Reply
what is enzyme
garry Reply
They are organic catalysts that alter the rate of chemical reactions in the body.
Iyadi
meaning they speed up reaction
Sarni
Enzymes are forms of chemicals that are specialized in their own areas.(eg digestion of food)
Emmanuel
Enzymes are organic catalysts
Ikenna
what is a cell
Praize Reply
Basic Functional Unit of Life
Pascal
what is biology
Mordi Reply
biology is the study of living organisms and their interactions with one another and their environments
Ysabella
which of the following event does not occur during some stages of interface?
Bangha Reply
What is microfilaments
KHalid Reply
What is multicellular organisms
Ovie Reply
these are organisms with more than two cells
Bangha
the process when a male toad fertilizer a female eggs is called what?
Ahrebe Reply
Fertilization
Gyamfi
how did unicellular organisms form plants and animals or is it that different unicellular organisms formed plants and animald
YXNG Reply
yes
James
thanks
YXNG
name the components of faeces
Damali
undigested carbohydrate, fibre
Sandra
what are unicellular organisms..?
Sackson
they have only one cell
Sandra
faeces contains many undigested food materials, after the food has been digested then it will be absorbed in the blood stream for assimilation.,......... but the remains toxic materials are stored in the rectum these toxic materials are the faeces and it contains bile salts, the polysaccharides .
James
nice.
Sandra
thanks
James
unicellular organisms are the ones with only single cell.
James
thanks for your answers guys.
Sackson
Ok
Richard
what is class bryophyta
Emefa Reply
how many stages do we have in glycolysis?
Damali
10 stages
Elisha
the presence of a membrane enclosed nuclosed is a characteristics of what
Addai Reply
eukaryotic cell
captain

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask