<< Chapter < Page Chapter >> Page >
 Part A of the illustration shows a relaxed muscle fiber. Two zigzagging Z lines extend from top to bottom. Thin actin filaments extend left and right from each Z line. Between the Z lines is a vertical M line. Thick myosin filaments extend left and right from the M line. The thick and thin filaments partially overlap. The A band represents the length that the thick filaments extend from both sides of the M line. The I band represents the part of the thin filaments that does not overlap with the thick filaments. Part B shows a contracted muscle fiber. In the contracted fiber, the thick and thin filaments completely overlap. The A band is the same length as in the uncontracted muscle, but the I band has shrunken to the width of the Z line.
When (a) a sarcomere (b) contracts, the Z lines move closer together and the I band gets smaller. The A band stays the same width and, at full contraction, the thin filaments overlap.

When a sarcomere shortens, some regions shorten whereas others stay the same length. A sarcomere is defined as the distance between two consecutive Z discs or Z lines; when a muscle contracts, the distance between the Z discs is reduced. The H zone—the central region of the A zone—contains only thick filaments and is shortened during contraction. The I band contains only thin filaments and also shortens. The A band does not shorten—it remains the same length—but A bands of different sarcomeres move closer together during contraction, eventually disappearing. Thin filaments are pulled by the thick filaments toward the center of the sarcomere until the Z discs approach the thick filaments. The zone of overlap, in which thin filaments and thick filaments occupy the same area, increases as the thin filaments move inward.

Atp and muscle contraction

The motion of muscle shortening occurs as myosin heads bind to actin and pull the actin inwards. This action requires energy, which is provided by ATP. Myosin binds to actin at a binding site on the globular actin protein. Myosin has another binding site for ATP at which enzymatic activity hydrolyzes ATP to ADP, releasing an inorganic phosphate molecule and energy.

ATP binding causes myosin to release actin, allowing actin and myosin to detach from each other. After this happens, the newly bound ATP is converted to ADP and inorganic phosphate, P i . The enzyme at the binding site on myosin is called ATPase. The energy released during ATP hydrolysis changes the angle of the myosin head into a “cocked” position. The myosin head is then in a position for further movement, possessing potential energy, but ADP and P i are still attached. If actin binding sites are covered and unavailable, the myosin will remain in the high energy configuration with ATP hydrolyzed, but still attached.

If the actin binding sites are uncovered, a cross-bridge will form; that is, the myosin head spans the distance between the actin and myosin molecules. P i is then released, allowing myosin to expend the stored energy as a conformational change. The myosin head moves toward the M line, pulling the actin along with it. As the actin is pulled, the filaments move approximately 10 nm toward the M line. This movement is called the power stroke, as it is the step at which force is produced. As the actin is pulled toward the M line, the sarcomere shortens and the muscle contracts.

When the myosin head is “cocked,” it contains energy and is in a high-energy configuration. This energy is expended as the myosin head moves through the power stroke; at the end of the power stroke, the myosin head is in a low-energy position. After the power stroke, ADP is released; however, the cross-bridge formed is still in place, and actin and myosin are bound together. ATP can then attach to myosin, which allows the cross-bridge cycle to start again and further muscle contraction can occur ( [link] ).

Questions & Answers

what is micro-organism
Jackson Reply
what is the hypothesis
what does mean stigma
Amira Reply
what is the full of the MOST dangerous disease in the world where one stops sleeping and just dies :Hint ; FFI
God Reply
fatal familial insomnia which affects the thalamus
there are other dangerous diseases like CAD i.e coronary artery disease
what is matter
Thomas Reply
it is any thing that has weight and occupies space
describe photosynthesis
Mavis Reply
What is equilibrium
What is equilibrium
like corporal intern balance right?
on my own understanding is just a balanced state
what is a chromosome?
Wise Reply
Are thread-like structures located inside the nucleus of animal and plant cells.
what are the difference between Biotic community and Ecological nitche.
Ganiyat Reply
what is the celll
A cell is the simplest bit of living matter that exist independently
cell is the basic unit of life
what is ecdysis
what is genetics
Sebastian Reply
The cell is the simplest bit of living matter that can exist independently.
what happenes when the cell of an organism Is removed?
Isaac Reply
The cell will not function properly
what is cell
Maarig Reply
cell is stractural and functional unit of our human body.
The study of cells are referred to as?
Kenneth Reply
what is active transport
johnny Reply
is the movement of molecules through a semi permeable membrane with the use of energy
is the movement of substances across a membrane against the concentration gradient by using energy.
what is living things
Aminu Reply
these are organisms that take in respiratory gases e.g plants and animals
they are organisms that undergoe the various life processes such as growth, respiration, reproduction, excretion etc
what is gland
an organ synthesizes a substance such as hormones or breast milk
Why do plants contain oxygen
Alfonso Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?