<< Chapter < Page Chapter >> Page >

Most animals have an exoskeleton, including insects, spiders, scorpions, horseshoe crabs, centipedes, and crustaceans. Scientists estimate that, of insects alone, there are over 30 million species on our planet. The exoskeleton is a hard covering or shell that provides benefits to the animal, such as protection against damage from predators and from water loss (for land animals); it also provides for the attachments of muscles.

As the tough and resistant outer cover of an arthropod, the exoskeleton may be constructed of a tough polymer such as chitin and is often biomineralized with materials such as calcium carbonate. This is fused to the animal’s epidermis. Ingrowths of the exoskeleton, called apodemes , function as attachment sites for muscles, similar to tendons in more advanced animals ( [link] ). In order to grow, the animal must first synthesize a new exoskeleton underneath the old one and then shed or molt the original covering. This limits the animal’s ability to grow continually, and may limit the individual’s ability to mature if molting does not occur at the proper time. The thickness of the exoskeleton must be increased significantly to accommodate any increase in weight. It is estimated that a doubling of body size increases body weight by a factor of eight. The increasing thickness of the chitin necessary to support this weight limits most animals with an exoskeleton to a relatively small size. The same principles apply to endoskeletons, but they are more efficient because muscles are attached on the outside, making it easier to compensate for increased mass.

Illustration shows a crab claw with a small, upper portion that pivots relative to a large, lower portion. The apodemes are located on the large portion, above and below the pivot point.
Apodemes are ingrowths on arthropod exoskeletons to which muscles attach. The apodemes on this crab leg are located above and below the fulcrum of the claw. Contraction of muscles attached to the apodemes pulls the claw closed.

An animal with an endoskeleton has its size determined by the amount of skeletal system it needs in order to support the other tissues and the amount of muscle it needs for movement. As the body size increases, both bone and muscle mass increase. The speed achievable by the animal is a balance between its overall size and the bone and muscle that provide support and movement.

Limiting effects of diffusion on size and development

The exchange of nutrients and wastes between a cell and its watery environment occurs through the process of diffusion. All living cells are bathed in liquid, whether they are in a single-celled organism or a multicellular one. Diffusion is effective over a specific distance and limits the size that an individual cell can attain. If a cell is a single-celled microorganism, such as an amoeba, it can satisfy all of its nutrient and waste needs through diffusion. If the cell is too large, then diffusion is ineffective and the center of the cell does not receive adequate nutrients nor is it able to effectively dispel its waste.

An important concept in understanding how efficient diffusion is as a means of transport is the surface to volume ratio. Recall that any three-dimensional object has a surface area and volume; the ratio of these two quantities is the surface-to-volume ratio. Consider a cell shaped like a perfect sphere: it has a surface area of 4πr 2 , and a volume of (4/3)πr 3 . The surface-to-volume ratio of a sphere is 3/r; as the cell gets bigger, its surface to volume ratio decreases, making diffusion less efficient. The larger the size of the sphere, or animal, the less surface area for diffusion it possesses.

Questions & Answers

what is class bryophyta
Emefa Reply
how many stages do we have in glycolysis?
Damali
10 stages
Elisha
the presence of a membrane enclosed nuclosed is a characteristics of what
Addai Reply
eukaryotic cell
captain
hetreothalism in fungi
Lekhram Reply
there are 3 trimester in human pregnancy
ROHIN Reply
I don't know answer of this question can u help me
ROHIN
yes
Bisa
what is a cell
Fatima Reply
A cell is functional and structural unit of life.
Bisa
what is genetic
Janet Reply
I join
Janet
what are the branchas of biology
Prisca Reply
zoology, ecology
Millicent
biochemistry,cytology,herpetology...etc
R0se
genetics, microbiology,botany and embryology
Muhammad
what is a cell
Kulunbawi Reply
cell is smallest unit of life. cells are often cell the building blocks of life...
Muhammad
the first twenty element
Orapinega Reply
what are the characteristics of living things?
R0se
growth,respiration,nutrition,sensitivity, movement,irritability, excretion,death.
Obinna
What is the difference between adaptation and competition in animals
Adeyemi Reply
What is biology
Adeyemi
it is a natural science stadey about living things
Zamiil
Biology is the bronch of science which deals with the study of life is called biology
Aziz
what is the x in 300 stands for?
Ogbudu Reply
the properties of life
Clarinda Reply
response to the environment, reproduction, homeostasis, growth,energy processing etc.....
Pushpam
hello.
Daniela
hi
MacPeter
Good
Thomas
what is reproduction
Tims
Reproduction is a fundamental feature of all known life,each individual organism exist as a result of re production.....or else Multiplying...
R0se
a complete virus particle known as
Darlington Reply
These are formed from identical protein subunitscalled capsomeres.
Pushpam
fabace family plant name
Pushpam Reply
in eukaryotes ...protein channel name which transport protein ...
Pushpam Reply
in bacteria ...chromosomal dna duplicate structure called
Pushpam

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask