<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Identify the parts of a typical leaf
  • Describe the internal structure and function of a leaf
  • Compare and contrast simple leaves and compound leaves
  • List and describe examples of modified leaves

Leaves are the main sites for photosynthesis: the process by which plants synthesize food. Most leaves are usually green, due to the presence of chlorophyll in the leaf cells. However, some leaves may have different colors, caused by other plant pigments that mask the green chlorophyll.

The thickness, shape, and size of leaves are adapted to the environment. Each variation helps a plant species maximize its chances of survival in a particular habitat. Usually, the leaves of plants growing in tropical rainforests have larger surface areas than those of plants growing in deserts or very cold conditions, which are likely to have a smaller surface area to minimize water loss.

Structure of a typical leaf

Each leaf typically has a leaf blade called the lamina    , which is also the widest part of the leaf. Some leaves are attached to the plant stem by a petiole    . Leaves that do not have a petiole and are directly attached to the plant stem are called sessile    leaves. Small green appendages usually found at the base of the petiole are known as stipules . Most leaves have a midrib, which travels the length of the leaf and branches to each side to produce veins of vascular tissue. The edge of the leaf is called the margin. [link] shows the structure of a typical eudicot leaf.

 Illustration shows the parts of a leaf. The petiole is the stem of the leaf. The midrib is a vessel that extends from the petiole to the leaf tip. Veins branch from the midrib. The lamina is the wide, flat part of the leaf. The margin is the edge of the leaf.
Deceptively simple in appearance, a leaf is a highly efficient structure.

Within each leaf, the vascular tissue forms veins. The arrangement of veins in a leaf is called the venation    pattern. Monocots and dicots differ in their patterns of venation ( [link] ). Monocots have parallel venation; the veins run in straight lines across the length of the leaf without converging at a point. In dicots, however, the veins of the leaf have a net-like appearance, forming a pattern known as reticulate venation. One extant plant, the Ginkgo biloba , has dichotomous venation where the veins fork.

 Part A photo shows the broad, sword-shaped leaves of a tulip. Parallel veins run up the leaves. Part B photo shows a teardrop-shaped linden leaf that has veins radiating out from the midrib. Smaller veins radiate out from these. Right photo shows a fan-shaped ginkgo leaf, which has veins radiating out from the petiole.
(a) Tulip ( Tulipa ), a monocot, has leaves with parallel venation. The netlike venation in this (b) linden ( Tilia cordata ) leaf distinguishes it as a dicot. The (c) Ginkgo biloba tree has dichotomous venation. (credit a photo: modification of work by “Drewboy64”/Wikimedia Commons; credit b photo: modification of work by Roger Griffith; credit c photo: modification of work by "geishaboy500"/Flickr; credit abc illustrations: modification of work by Agnieszka Kwiecień)

Leaf arrangement

The arrangement of leaves on a stem is known as phyllotaxy    . The number and placement of a plant’s leaves will vary depending on the species, with each species exhibiting a characteristic leaf arrangement. Leaves are classified as either alternate, spiral, or opposite. Plants that have only one leaf per node have leaves that are said to be either alternate—meaning the leaves alternate on each side of the stem in a flat plane—or spiral, meaning the leaves are arrayed in a spiral along the stem. In an opposite leaf arrangement, two leaves arise at the same point, with the leaves connecting opposite each other along the branch. If there are three or more leaves connected at a node, the leaf arrangement is classified as whorled    .

Questions & Answers

what is oxidation?
Rose Reply
 the state or result of being oxidized
Emmanuel
hahahaha thanks, but my teachers requires a thorough meaning about that
Rose
Is the process of oxidizing ,the addition of oxygen to a compound with a loss of electrons, always accompanied by reduction
Korletey
loss of electron....
Anwar
thank you. 😊
Rose
thank you. 😊
Rose
thank you. 😊
Rose
what is oxidized
Oyebanji
the process or result of oxidizing or being oxidized.
Jersey
my pleasure
Anwar
Google itttt.....if need explanation
Anwar
to rose...
Anwar
oxidation is the removal of oxygen addition of hydrogen
SIRAJO
what is genetic
Chibawa Reply
name the enzymes that i found in the saliva
Valuables Reply
draw a bacterium cell and label
Kadijah Reply
What are the osmoregulatory functions of the kidney?
bisi Reply
filter
Meenu
What is ecology
Hebert Reply
what is cell
Etama Reply
cell is the basic unit of life
Asiatou
cell is the basic structural and functional unit of an living organism
Darshan
a cell is the smallest and most basic unit of a living thing
John
cell is the basic unit of life. we are made up of 60,000 billions of cells.Each cell carry out a specific function in the body.
Pallavi
A cell is the smallest basic functioning unit of life.
Ali
where is the pectoral gridle located?
Tiania Reply
What is hypotonic
Bright Reply
what is hypotonic
Dangaya
Hypotonic means weak solution
Ali
the difference between the two cells
Obeng Reply
explain the courses and the correction of lon term sightedness and short term sightedness
Isaac Reply
long sightedness is said to be like someone that can see far object clearly why short sightedness is someone that only can see near obect
SHEDRACK
why drinking excess alcohol causes thirst and dehydration
uwikuzo Reply
Can we chat about nutrition please?
Elia
yes
Uzair
sure
Uzair
Uhm why is it so important to follow the nutritional process?
Elia
BC it contribute to the source of life
SHEDRACK
what is reproduction
smart Reply
it is d act of bringing young ones to life
Oyebanji
to ensure survival of a species🚴‍♀️
Michelle
what is a genotype
Collins
what is hazardous
smart
a cell is the smallest unit of a living thing. so we all have cell
smart
It is the formation of a zygote resulting from the fusion of the sperm cell with the ovum.Thus,this results in the production of new species which are genetically dissimilar from their parent cells.
Pallavi
yes we all have cell round our body without the existances of cell them they will be no life in us as human
SHEDRACK
what is size of cell
Mohd Reply
what is size of Hart
Mohd
nanometers=um sign thingie
Michelle
microns=nanometers
Michelle
monomers and polymers of nucleic acids?
Jyrl Reply
dna and rna involvement
Michelle

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask