<< Chapter < Page Chapter >> Page >
 The liverwort has a flat, leaf-like structure haploid (1n) called a thallus. Root-like rhizoids grow from the bottom of the thallus. A slender stalk extends from the thallus, and an archegonial head sits at its top. The archegonial head has fronds, like a palm tree. The underside of the archegonial head contains protrusions called archegonia, which house the eggs. Sperm enter through a hole in the bottom of the archegonium and fertilize the egg to produce a diploid (2n) embryo. The embryo grows into a stalk. Meiosis produces haploid (1n) spores in a sac at the tip of the stalk . The sac bursts open, releasing the spores. The spores sprout, producing a new thallus and rhizoids.
The life cycle of a typical liverwort is shown. (credit: modification of work by Mariana Ruiz Villareal)

Hornworts

The hornworts    ( Anthocerotophyta ) belong to the broad bryophyte group. They have colonized a variety of habitats on land, although they are never far from a source of moisture. The short, blue-green gametophyte is the dominant phase of the lifecycle of a hornwort. The narrow, pipe-like sporophyte is the defining characteristic of the group. The sporophytes emerge from the parent gametophyte and continue to grow throughout the life of the plant ( [link] ).

 The base of the hornwort plant, called the thallus, has a wrinkled, leaf-like appearance. The sporophytes are a cluster of slender green stalks with brown tips grows from this wrinkled mass.
Hornworts grow a tall and slender sporophyte. (credit: modification of work by Jason Hollinger)

Stomata appear in the hornworts and are abundant on the sporophyte. Photosynthetic cells in the thallus contain a single chloroplast. Meristem cells at the base of the plant keep dividing and adding to its height. Many hornworts establish symbiotic relationships with cyanobacteria that fix nitrogen from the environment.

The lifecycle of hornworts ( [link] ) follows the general pattern of alternation of generations. The gametophytes grow as flat thalli on the soil with embedded gametangia. Flagellated sperm swim to the archegonia and fertilize eggs. The zygote develops into a long and slender sporophyte that eventually splits open, releasing spores. Thin cells called pseudoelaters surround the spores and help propel them further in the environment. Unlike the elaters observed in horsetails, the hornwort pseudoelaters are single-celled structures. The haploid spores germinate and give rise to the next generation of gametophyte.

 In hornworts, the gametophyte is a haploid (1n) leaf-like structure with slender stalks called rhizoids underneath. Male sex organs called antheridia produce sperm, and female sex organs called archegonia produce eggs. Both male and female sex organs form just beneath the surface of the gametophyte, and are exposed to the surface as the organs mature. The sperm swims to the egg or is propelled by water. When the egg is fertilized, the embryo grows into a hollow tube-like structure called a sporophyte. Meiosis inside the sporophyte produces haploid (1n) spores. The spores are ejected from the top of the tube. They grow into new gametophytes, completing the cycle.
The alternation of generation in hornworts is shown. (credit: modification of work by “Smith609”/Wikimedia Commons based on original work by Mariana Ruiz Villareal)

Mosses

More than 10,000 species of mosses    have been catalogued. Their habitats vary from the tundra, where they are the main vegetation, to the understory of tropical forests. In the tundra, the mosses’ shallow rhizoids allow them to fasten to a substrate without penetrating the frozen soil. Mosses slow down erosion, store moisture and soil nutrients, and provide shelter for small animals as well as food for larger herbivores, such as the musk ox. Mosses are very sensitive to air pollution and are used to monitor air quality. They are also sensitive to copper salts, so these salts are a common ingredient of compounds marketed to eliminate mosses from lawns.

Mosses form diminutive gametophytes, which are the dominant phase of the lifecycle. Green, flat structures—resembling true leaves, but lacking vascular tissue—are attached in a spiral to a central stalk. The plants absorb water and nutrients directly through these leaf-like structures. Some mosses have small branches. Some primitive traits of green algae, such as flagellated sperm, are still present in mosses that are dependent on water for reproduction. Other features of mosses are clearly adaptations to dry land. For example, stomata are present on the stems of the sporophyte, and a primitive vascular system runs up the sporophyte’s stalk. Additionally, mosses are anchored to the substrate—whether it is soil, rock, or roof tiles—by multicellular rhizoids    . These structures are precursors of roots. They originate from the base of the gametophyte, but are not the major route for the absorption of water and minerals. The lack of a true root system explains why it is so easy to rip moss mats from a tree trunk. The moss lifecycle follows the pattern of alternation of generations as shown in [link] . The most familiar structure is the haploid gametophyte, which germinates from a haploid spore and forms first a protonema    —usually, a tangle of single-celled filaments that hug the ground. Cells akin to an apical meristem actively divide and give rise to a gametophore, consisting of a photosynthetic stem and foliage-like structures. Rhizoids form at the base of the gametophore. Gametangia of both sexes develop on separate gametophores. The male organ (the antheridium) produces many sperm, whereas the archegonium (the female organ) forms a single egg. At fertilization, the sperm swims down the neck to the venter and unites with the egg inside the archegonium. The zygote, protected by the archegonium, divides and grows into a sporophyte, still attached by its foot to the gametophyte.

Art connection

 In mosses, the mature haploid (1n) gametophyte is a slender, nonvascular stem with fuzzy, non-vascular leaves. Root-like rhizoids grow from the bottom. Male antheridia and female archegonia grow at the tip of the stem. Sperm fertilize the eggs, producing a diploid (2n) zygote inside a vase-like structure called a venter inside the archegonial head. The embryo grows into a sporophyte that projects like a flower from the vase. The sporophyte undergoes meiosis to produce haploid (1n) spores that grow to produce mature gametophytes, completing the cycle.
This illustration shows the life cycle of mosses. (credit: modification of work by Mariana Ruiz Villareal)

Which of the following statements about the moss life cycle is false?

  1. The mature gametophyte is haploid.
  2. The sporophyte produces haploid spores.
  3. The calyptra buds to form a mature gametophyte.
  4. The zygote is housed in the venter.

The slender seta    (plural, setae), as seen in [link] , contains tubular cells that transfer nutrients from the base of the sporophyte (the foot) to the sporangium or capsule    .

 In the photo, setae appear as long, slender, bent stems with oval-shaped capsules at the tips.
This photograph shows the long slender stems, called setae, connected to capsules of the moss Thamnobryum alopecurum . (credit: modification of work by Hermann Schachner)

A structure called a peristome    increases the spread of spores after the tip of the capsule falls off at dispersal. The concentric tissue around the mouth of the capsule is made of triangular, close-fitting units, a little like “teeth”; these open and close depending on moisture levels, and periodically release spores.

Section summary

Seedless nonvascular plants are small, having the gametophyte as the dominant stage of the lifecycle. Without a vascular system and roots, they absorb water and nutrients on all their exposed surfaces. Collectively known as bryophytes, the three main groups include the liverworts, the hornworts, and the mosses. Liverworts are the most primitive plants and are closely related to the first land plants. Hornworts developed stomata and possess a single chloroplast per cell. Mosses have simple conductive cells and are attached to the substrate by rhizoids. They colonize harsh habitats and can regain moisture after drying out. The moss sporangium is a complex structure that allows release of spores away from the parent plant.

Art connections

[link] Which of the following statements about the moss life cycle is false?

  1. The mature gametophyte is haploid.
  2. The sporophyte produces haploid spores.
  3. The rhizoid buds to form a mature gametophyte.
  4. The zygote is housed in the venter.

[link] C.

Got questions? Get instant answers now!

Questions & Answers

prove starch in a mango leaf
Ruth Reply
prove starch in a leaf
Ruth
draw and name the plant cell
Nalongo
wat is classification
Nalongo
levels of classification
Nalongo
classification of what
Ezenwa
Identify the caste of termites or Honey bees
Mensah Reply
Soldier Winged reproductive Worker King and queen
Franklina
what is biology
Jackson Reply
biology is a study of living organism
Brilliant
what is the myelin sheath?
description on how an enzyme such as pepsin breaks down a substrate
linister Reply
what is biology
Kanzy Reply
study of life
Tufail
the study of life..meaning studying all aspects of life in humans,animals and everything inside the global
Nalukui
study of life
Memory
is the branch of science which deal with the study of living and non living things
David
Is the study of living organisms or living things
Franklina
draw the taxonomic hierarchy of classification
KC Reply
Kingdom Class Order Family Genus Species
Franklina
explain the following bush burning, deforestation, over grazing
Thomas Reply
what is biodiversity
Tracy
No idea
nana
Please what are alleles
nana
Deforestation: this is the cutting down of trees without planting new ones
Brilliant
over grazing is the continuously planting of crops in one particular land.
Friday
what is afforestation
Friday
Bush burning is the removal of the natural vegetation cover, that protects the soil surface through the use of fire. Deforestation is the actor process of establishing a forest especially on land not previously forested.
Franklina
Over grazing is the practice of grazing toi many livestock for too long a period on a land unable to recover its vegetation.
Franklina
what is physiology
Joseph Reply
the study of physical things
Nalukui
dealing with those things which you can see by your neck eyes
Odwa
Further explanation please
nana
the study of things tt interact with time,energy
David
Is the scientific study of chemistry and physics of the structure of the body
Franklina
can a lactating mother get pregnant
Elias Reply
what is cell
Deng Reply
the basic building blocks of all living matter...
Izzati
cell is a basic unit of life
MAI
building blocks ie cells not a cell there4 a cell is the basic unit of biotic things
David
Cell is a basic unit of life
Malekhotla
A cell is the basic structural and functional unit of life
Franklina
A cell is the basic unit of life,it include both plant and animals need a cell
Thomas
what's microscope
Emmanuel Reply
is any instrument that use to wiew or to see the small object that you can't see with our naked eye
MR
is any instrument used to magnifie small object
Memory
Is an instrument that produces an enlarged image of an object or specimen that is too small to be seen with our naked eye
Franklina
what is the function of the spinal cord
Gaone Reply
For responsible of movement and sensation
Franklina
A cell is the structural and fictional unit of life
Evelyn Reply
what is tidal volume
Erick
tidal volume is the volume of each breath measured during inspiration or expiration or averged for the entire respiratory cycle
Gaone
Give function of the long strands of slippery or jelly like substance in eggs of the amphibians in water ?
Erick
the long strands of slippery or jelly like substance him eggs of amphibians in water helps in keeping the eggs moist and protection from predators
Gaone
sorry not him in
Gaone
what's is microscope
Emmanuel
How do bacteria useful?
Bisirikirwa
how can plant feed other animals
Nana Reply
After the animals has death and decayed then the plant used the nutrients to manufacture there food.
Yusuf
Plants and animals depends on each other. Meaning, plants help animals with greens and fruits or vegetables while animals provides nutrients when dead and decayed. Therefore,as you see the food web and food chain, you'll have more.
Jairenaririko

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask