<< Chapter < Page Chapter >> Page >

Electrons fill orbitals in a consistent order: they first fill the orbitals closest to the nucleus, then they continue to fill orbitals of increasing energy further from the nucleus. If there are multiple orbitals of equal energy, they will be filled with one electron in each energy level before a second electron is added. The electrons of the outermost energy level determine the energetic stability of the atom and its tendency to form chemical bonds with other atoms to form molecules.

Under standard conditions, atoms fill the inner shells first, often resulting in a variable number of electrons in the outermost shell. The innermost shell has a maximum of two electrons but the next two electron shells can each have a maximum of eight electrons. This is known as the octet rule    , which states, with the exception of the innermost shell, that atoms are more stable energetically when they have eight electrons in their valence shell    , the outermost electron shell. Examples of some neutral atoms and their electron configurations are shown in [link] . Notice that in this [link] , helium has a complete outer electron shell, with two electrons filling its first and only shell. Similarly, neon has a complete outer 2n shell containing eight electrons. In contrast, chlorine and sodium have seven and one in their outer shells, respectively, but theoretically they would be more energetically stable if they followed the octet rule and had eight.

Art connection

Bohr diagrams of elements from groups 1, 14, 17 and 18, and periods 1, 2 and 3 are shown. Period 1, in which the 1n shell is filling, contains hydrogen and helium. Hydrogen, in group 1, has one valence electron. Helium, in group 18, has two valence electrons. The 1n shell holds a maximum of two electrons, so the shell is full and the electron configuration is stable. Period 2, in which the 2n shell is filling, contains lithium, carbon, fluorine, and neon. Lithium, in group 1, has 1 valence electron. Carbon, in group 14, has 4 valence electrons. Fluorine, in group 17, has 7 valence electrons. Neon, in group 18, has 8 valence electrons, a full octet. Period 3, in which the 3n shell is filling, contains sodium, silicon, chlorine, and argon. Sodium, in group 1, has 1 valence electron. Silicon, in group 14, has 4 valence electrons. Chlorine, in group 17, has 7 valence electrons. Argon, in group 18, has 8 valence electrons, a full octet.
Bohr diagrams indicate how many electrons fill each principal shell. Group 18 elements (helium, neon, and argon are shown) have a full outer, or valence, shell. A full valence shell is the most stable electron configuration. Elements in other groups have partially filled valence shells and gain or lose electrons to achieve a stable electron configuration.

An atom may give, take, or share electrons with another atom to achieve a full valence shell, the most stable electron configuration. Looking at this figure, how many electrons do elements in group 1 need to lose in order to achieve a stable electron configuration? How many electrons do elements in groups 14 and 17 need to gain to achieve a stable configuration?

Understanding that the organization of the periodic table is based on the total number of protons (and electrons) helps us know how electrons are distributed among the outer shell. The periodic table is arranged in columns and rows based on the number of electrons and where these electrons are located. Take a closer look at the some of the elements in the table’s far right column in [link] . The group 18 atoms helium (He), neon (Ne), and argon (Ar) all have filled outer electron shells, making it unnecessary for them to share electrons with other atoms to attain stability; they are highly stable as single atoms. Their non-reactivity has resulted in their being named the inert gases (or noble gases ). Compare this to the group 1 elements in the left-hand column. These elements, including hydrogen (H), lithium (Li), and sodium (Na), all have one electron in their outermost shells. That means that they can achieve a stable configuration and a filled outer shell by donating or sharing one electron with another atom or a molecule such as water. Hydrogen will donate or share its electron to achieve this configuration, while lithium and sodium will donate their electron to become stable. As a result of losing a negatively charged electron, they become positively charged ions . Group 17 elements, including fluorine and chlorine, have seven electrons in their outmost shells, so they tend to fill this shell with an electron from other atoms or molecules, making them negatively charged ions. Group 14 elements, of which carbon is the most important to living systems, have four electrons in their outer shell allowing them to make several covalent bonds (discussed below) with other atoms. Thus, the columns of the periodic table represent the potential shared state of these elements’ outer electron shells that is responsible for their similar chemical characteristics.

Questions & Answers

What is Staining?
Fazal Reply
what is biology
PEACE Reply
Biology is the study of life
Tijani
what is biology
Ysabella Reply
biology is a study of living things
PEACE
Biology is a diverse branch of science that deals with mostly living things
Emmanuel
yes
Swapnil
What happen when inhibit the transcription?
Swapnil
what is the effect of not doing sexual intercourse
SUZAN Reply
what is the mechanism of cellular respiration
Rita Reply
what is enzyme
garry Reply
They are organic catalysts that alter the rate of chemical reactions in the body.
Iyadi
meaning they speed up reaction
Sarni
Enzymes are forms of chemicals that are specialized in their own areas.(eg digestion of food)
Emmanuel
what is a cell
Praize Reply
Basic Functional Unit of Life
Pascal
what is biology
Mordi Reply
biology is the study of living organisms and their interactions with one another and their environments
Ysabella
which of the following event does not occur during some stages of interface?
Bangha Reply
What is microfilaments
KHalid Reply
What is multicellular organisms
Ovie Reply
these are organisms with more than two cells
Bangha
the process when a male toad fertilizer a female eggs is called what?
Ahrebe Reply
Fertilization
Gyamfi
how did unicellular organisms form plants and animals or is it that different unicellular organisms formed plants and animald
YXNG Reply
yes
James
thanks
YXNG
name the components of faeces
Damali
undigested carbohydrate, fibre
Sandra
what are unicellular organisms..?
Sackson
they have only one cell
Sandra
faeces contains many undigested food materials, after the food has been digested then it will be absorbed in the blood stream for assimilation.,......... but the remains toxic materials are stored in the rectum these toxic materials are the faeces and it contains bile salts, the polysaccharides .
James
nice.
Sandra
thanks
James
unicellular organisms are the ones with only single cell.
James
thanks for your answers guys.
Sackson
Ok
Richard
what is class bryophyta
Emefa Reply
how many stages do we have in glycolysis?
Damali
10 stages
Elisha
the presence of a membrane enclosed nuclosed is a characteristics of what
Addai Reply
eukaryotic cell
captain

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask