<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the different types of mutations in DNA
  • Explain DNA repair mechanisms

DNA replication is a highly accurate process, but mistakes can occasionally occur, such as a DNA polymerase inserting a wrong base. Uncorrected mistakes may sometimes lead to serious consequences, such as cancer. Repair mechanisms correct the mistakes. In rare cases, mistakes are not corrected, leading to mutations; in other cases, repair enzymes are themselves mutated or defective.

Most of the mistakes during DNA replication are promptly corrected by DNA polymerase by proofreading the base that has been just added ( [link] ). In proofreading    , the DNA pol reads the newly added base before adding the next one, so a correction can be made. The polymerase checks whether the newly added base has paired correctly with the base in the template strand. If it is the right base, the next nucleotide is added. If an incorrect base has been added, the enzyme makes a cut at the phosphodiester bond and releases the wrong nucleotide. This is performed by the exonuclease action of DNA pol III. Once the incorrect nucleotide has been removed, a new one will be added again.

Illustration shows DNA polymerase replicating a strand of DNA. The enzyme has accidentally inserted G opposite A, resulting in a bulge. The enzyme backs up to fix the error.
Proofreading by DNA polymerase corrects errors during replication.

Some errors are not corrected during replication, but are instead corrected after replication is completed; this type of repair is known as mismatch repair    ( [link] ). The enzymes recognize the incorrectly added nucleotide and excise it; this is then replaced by the correct base. If this remains uncorrected, it may lead to more permanent damage. How do mismatch repair enzymes recognize which of the two bases is the incorrect one? In E. coli , after replication, the nitrogenous base adenine acquires a methyl group; the parental DNA strand will have methyl groups, whereas the newly synthesized strand lacks them. Thus, DNA polymerase is able to remove the wrongly incorporated bases from the newly synthesized, non-methylated strand. In eukaryotes, the mechanism is not very well understood, but it is believed to involve recognition of unsealed nicks in the new strand, as well as a short-term continuing association of some of the replication proteins with the new daughter strand after replication has completed.

The top illustration shows a replicated DNA strand with G-T base mismatch. The bottom illustration shows the repaired DNA, which has the correct G-C base pairing.
In mismatch repair, the incorrectly added base is detected after replication. The mismatch repair proteins detect this base and remove it from the newly synthesized strand by nuclease action. The gap is now filled with the correctly paired base.

In another type of repair mechanism, nucleotide excision repair    , enzymes replace incorrect bases by making a cut on both the 3' and 5' ends of the incorrect base ( [link] ). The segment of DNA is removed and replaced with the correctly paired nucleotides by the action of DNA pol. Once the bases are filled in, the remaining gap is sealed with a phosphodiester linkage catalyzed by DNA ligase. This repair mechanism is often employed when UV exposure causes the formation of pyrimidine dimers.

Illustration shows a DNA strand in which a thymine dimer has formed. Excision repair enzyme cut out the section of DNA that contains the dimer so it can be replaced with normal base pairs.
Nucleotide excision repairs thymine dimers. When exposed to UV, thymines lying adjacent to each other can form thymine dimers. In normal cells, they are excised and replaced.

Questions & Answers

What is Staining?
Fazal Reply
what is biology
Biology is the study of life
what is biology
Ysabella Reply
biology is a study of living things
Biology is a diverse branch of science that deals with mostly living things
What happen when inhibit the transcription?
what is the effect of not doing sexual intercourse
what is the mechanism of cellular respiration
Rita Reply
what is enzyme
garry Reply
They are organic catalysts that alter the rate of chemical reactions in the body.
meaning they speed up reaction
Enzymes are forms of chemicals that are specialized in their own areas.(eg digestion of food)
Enzymes are organic catalysts
what is a cell
Praize Reply
Basic Functional Unit of Life
what is biology
Mordi Reply
biology is the study of living organisms and their interactions with one another and their environments
which of the following event does not occur during some stages of interface?
Bangha Reply
What is microfilaments
KHalid Reply
What is multicellular organisms
Ovie Reply
these are organisms with more than two cells
the process when a male toad fertilizer a female eggs is called what?
Ahrebe Reply
how did unicellular organisms form plants and animals or is it that different unicellular organisms formed plants and animald
YXNG Reply
name the components of faeces
undigested carbohydrate, fibre
what are unicellular organisms..?
they have only one cell
faeces contains many undigested food materials, after the food has been digested then it will be absorbed in the blood stream for assimilation.,......... but the remains toxic materials are stored in the rectum these toxic materials are the faeces and it contains bile salts, the polysaccharides .
unicellular organisms are the ones with only single cell.
thanks for your answers guys.
what is class bryophyta
Emefa Reply
how many stages do we have in glycolysis?
10 stages
the presence of a membrane enclosed nuclosed is a characteristics of what
Addai Reply
eukaryotic cell

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?