<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Outline the invention of the telescope.
  • Describe the working of a telescope.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 6.E.4.1 The student is able to plan data collection strategies and perform data analysis and evaluation of evidence about the formation of images due to reflection of light from curved spherical mirrors. (S.P. 3.2, 4.1, 5.1, 5.2, 5.3)
  • 6.E.5.1 The student is able to use quantitative and qualitative representations and models to analyze situations and solve problems about image formation occurring due to the refraction of light through thin lenses. (S.P. 1.4, 2.2)

Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and better resolution. Although Galileo is often credited with inventing the telescope, he actually did not. What he did was more important. He constructed several early telescopes, was the first to study the heavens with them, and made monumental discoveries using them. Among these are the moons of Jupiter, the craters and mountains on the Moon, the details of sunspots, and the fact that the Milky Way is composed of vast numbers of individual stars.

[link] (a) shows a telescope made of two lenses, the convex objective and the concave eyepiece, the same construction used by Galileo. Such an arrangement produces an upright image and is used in spyglasses and opera glasses.

Part a of the figure depicts the internal functioning of a telescope; from left to right it has an upright image of a tree, a convex lens objective, a concave lens eyepiece, and a picture of eye where rays enter. Parallel rays strike the objective convex lens, converge; strike the concave eyepiece, and enter the eye. Dotted lines from the striking rays of the eyepiece are drawn backside and join at the beginning of the final image. Part b of the figure, from left to right, has an inverted enlarged image of a tree, a convex objective, a smaller inverted image of a tree, a convex eyepiece and a picture of an eye viewing the image. Rays from a very distant object pass through the objective lens, focus at a focal point f sub o, forming a smaller upside-down image of a tree of height h sub i, converge and pass through the eyepiece to reach the eye. Dotted lines drawn backwards focus at the tip of the final enlarged inverted image of a tree of height h prime sub i, from the rays striking the eyepiece are also shown. An angle theta, subtended by the rays striking the objective lens and an angle, subtended by the telescopic enlarged inverted image are also depicted.
(a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image that is the object for the eyepiece. The eyepiece forms a case 2 final image that is magnified.

The most common two-lens telescope, like the simple microscope, uses two convex lenses and is shown in [link] (b). The object is so far away from the telescope that it is essentially at infinity compared with the focal lengths of the lenses ( d o ). The first image is thus produced at d i = f o , as shown in the figure. To prove this, note that

1 d i = 1 f o 1 d o = 1 f o 1 . size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over {d rSub { size 8{o} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over { infinity } } } {}

Because 1 / = 0 size 12{ {1} slash { infinity =0} } {} , this simplifies to

1 d i = 1 f o , size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } } {}

which implies that d i = f o , as claimed. It is true that for any distant object and any lens or mirror, the image is at the focal length.

The first image formed by a telescope objective as seen in [link] (b) will not be large compared with what you might see by looking at the object directly. For example, the spot formed by sunlight focused on a piece of paper by a magnifying glass is the image of the Sun, and it is small. The telescope eyepiece (like the microscope eyepiece) magnifies this first image. The distance between the eyepiece and the objective lens is made slightly less than the sum of their focal lengths so that the first image is closer to the eyepiece than its focal length. That is, d o is less than f e , and so the eyepiece forms a case 2 image that is large and to the left for easy viewing. If the angle subtended by an object as viewed by the unaided eye is θ , and the angle subtended by the telescope image is θ , then the angular magnification     M is defined to be their ratio. That is, M = θ / θ . It can be shown that the angular magnification of a telescope is related to the focal lengths of the objective and eyepiece; and is given by

Questions & Answers

what is physics
Nwafor Reply
is the study of matter in relation to energy
Kintu
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
Obrian Reply
what is power?
aron Reply
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
Alona Reply
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
Kavita Reply
hi
Godfred
what about the wind vane
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
Anurag Reply
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
Jaydie Reply
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
Princewill Reply
how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
I have a exam on 12 february
David Reply
what is velocity
Jiti
the speed of something in a given direction.
Ju
what is a magnitude in physics
Jiti Reply
Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.
Giovani Reply
What is meant by dielectric charge?
It's Reply
what happens to the size of charge if the dielectric is changed?
Brhanu Reply
omega= omega not +alpha t derivation
Provakar Reply
u have to derivate it respected to time ...and as w is the angular velocity uu will relace it with "thita × time""
Abrar
Practice Key Terms 2

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask