<< Chapter < Page Chapter >> Page >

Microstructure of proteins

Proteins are polymers made up of nitrogen-containing monomers called amino acids. An amino acid    is a molecule composed of an amino group and a carboxyl group, together with a variable side chain. Just 20 different amino acids contribute to nearly all of the thousands of different proteins important in human structure and function. Body proteins contain a unique combination of a few dozen to a few hundred of these 20 amino acid monomers. All 20 of these amino acids share a similar structure ( [link] ). All consist of a central carbon atom to which the following are bonded:

  • a hydrogen atom
  • an alkaline (basic) amino group NH 2 (see [link] )
  • an acidic carboxyl group COOH (see [link] )
  • a variable group

Structure of an amino acid

This figure shows the structure of an amino acid.

Notice that all amino acids contain both an acid (the carboxyl group) and a base (the amino group) (amine = “nitrogen-containing”). For this reason, they make excellent buffers, helping the body regulate acid–base balance. What distinguishes the 20 amino acids from one another is their variable group, which is referred to as a side chain or an R-group. This group can vary in size and can be polar or nonpolar, giving each amino acid its unique characteristics. For example, the side chains of two amino acids—cysteine and methionine—contain sulfur. Sulfur does not readily participate in hydrogen bonds, whereas all other amino acids do. This variation influences the way that proteins containing cysteine and methionine are assembled.

Amino acids join via dehydration synthesis to form protein polymers ( [link] ). The unique bond holding amino acids together is called a peptide bond. A peptide bond    is a covalent bond between two amino acids that forms by dehydration synthesis. A peptide, in fact, is a very short chain of amino acids. Strands containing fewer than about 100 amino acids are generally referred to as polypeptides rather than proteins.

Peptide bond

This figure shows the formation of a peptide bond, highlighted in blue.
Different amino acids join together to form peptides, polypeptides, or proteins via dehydration synthesis. The bonds between the amino acids are peptide bonds.

The body is able to synthesize most of the amino acids from components of other molecules; however, nine cannot be synthesized and have to be consumed in the diet. These are known as the essential amino acids.

Free amino acids available for protein construction are said to reside in the amino acid pool within cells. Structures within cells use these amino acids when assembling proteins. If a particular essential amino acid is not available in sufficient quantities in the amino acid pool, however, synthesis of proteins containing it can slow or even cease.

Shape of proteins

Just as a fork cannot be used to eat soup and a spoon cannot be used to spear meat, a protein’s shape is essential to its function. A protein’s shape is determined, most fundamentally, by the sequence of amino acids of which it is made ( [link] a ). The sequence is called the primary structure of the protein.

The shape of proteins

This figure shows the secondary structure of peptides. The top panel shows a straight chain, the middle panel shows an alpha-helix and a beta sheet. The bottom panel shows the tertiary structure and fully folded protein.
(a) The primary structure is the sequence of amino acids that make up the polypeptide chain. (b) The secondary structure, which can take the form of an alpha-helix or a beta-pleated sheet, is maintained by hydrogen bonds between amino acids in different regions of the original polypeptide strand. (c) The tertiary structure occurs as a result of further folding and bonding of the secondary structure. (d) The quaternary structure occurs as a result of interactions between two or more tertiary subunits. The example shown here is hemoglobin, a protein in red blood cells which transports oxygen to body tissues.

Questions & Answers

what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
what are the layers of the skin
Helen Reply
It is made up of three layers, the epidermis, dermis, and the hypodermis, all three of which vary significantly in their anatomy and function. The skin's structure is made up of an intricate network which serves as the body's initial barrier against pathogens, UV light, and chemicals, and mechanical
Omer
what is diabetes?
Ifeoluwa
Diabetes is a chronic (long-lasting) health condition that affects how your body turns food into energy. Your body breaks down most of the food you eat into sugar (glucose) and releases it into your bloodstream. When your blood sugar goes up, it signals your pancreas to release insulin. Insulin act
Omer
what is gastric lavage and their implications
Ifeoluwa
what is velium
chizzy
what is a purpose
chizzy
what's fibroid
Kizito
what are disorders of connective tissue
Ester Reply
Rheumatoid arthritis (RA) Scleroderma. Granulomatosis with polyangiitis (GPA) Churg-Strauss syndrome. Lupus. Microscopic polyangiitis. Polymyositis/dermatomyositis. Marfan syndrome.
Omer
arthritis vasculitis
Enitan
what is cardiac output
Okoye Reply
(CO) amount of blood pumped by each ventricle during one minute; equals HR multiplied by SV
AI-Robot
what is SV and HR stand for
David
SV- Stroke Volume HR- Heart Rate
Ebelechukwu
Cardiac output is the amount of blood pumped by the heart in one minute. It's calculated by multiplying the heart rate (the number of times the heart beats in one minute) by the stroke volume (the amount of blood pumped out by the heart with each beat). So, cardiac output = heart rate x stroke volum
Dickson

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask