<< Chapter < Page Chapter >> Page >

Development of the placenta

During the first several weeks of development, the cells of the endometrium—referred to as decidual cells—nourish the nascent embryo. During prenatal weeks 4–12, the developing placenta gradually takes over the role of feeding the embryo, and the decidual cells are no longer needed. The mature placenta is composed of tissues derived from the embryo, as well as maternal tissues of the endometrium. The placenta connects to the conceptus via the umbilical cord    , which carries deoxygenated blood and wastes from the fetus through two umbilical arteries; nutrients and oxygen are carried from the mother to the fetus through the single umbilical vein. The umbilical cord is surrounded by the amnion, and the spaces within the cord around the blood vessels are filled with Wharton’s jelly, a mucous connective tissue.

The maternal portion of the placenta develops from the deepest layer of the endometrium, the decidua basalis. To form the embryonic portion of the placenta, the syncytiotrophoblast and the underlying cells of the trophoblast (cytotrophoblast cells) begin to proliferate along with a layer of extraembryonic mesoderm cells. These form the chorionic membrane    , which envelops the entire conceptus as the chorion. The chorionic membrane forms finger-like structures called chorionic villi    that burrow into the endometrium like tree roots, making up the fetal portion of the placenta. The cytotrophoblast cells perforate the chorionic villi, burrow farther into the endometrium, and remodel maternal blood vessels to augment maternal blood flow surrounding the villi. Meanwhile, fetal mesenchymal cells derived from the mesoderm fill the villi and differentiate into blood vessels, including the three umbilical blood vessels that connect the embryo to the developing placenta ( [link] ).

Cross-section of the placenta

This figure shows the location and structure of the placenta. The left panel shows a fetus in the womb. The right panel shows a magnified view of a small region including the placenta and the blood vessels.
In the placenta, maternal and fetal blood components are conducted through the surface of the chorionic villi, but maternal and fetal bloodstreams never mix directly.

The placenta develops throughout the embryonic period and during the first several weeks of the fetal period; placentation    is complete by weeks 14–16. As a fully developed organ, the placenta provides nutrition and excretion, respiration, and endocrine function ( [link] and [link] ). It receives blood from the fetus through the umbilical arteries. Capillaries in the chorionic villi filter fetal wastes out of the blood and return clean, oxygenated blood to the fetus through the umbilical vein. Nutrients and oxygen are transferred from maternal blood surrounding the villi through the capillaries and into the fetal bloodstream. Some substances move across the placenta by simple diffusion. Oxygen, carbon dioxide, and any other lipid-soluble substances take this route. Other substances move across by facilitated diffusion. This includes water-soluble glucose. The fetus has a high demand for amino acids and iron, and those substances are moved across the placenta by active transport.

Maternal and fetal blood does not commingle because blood cells cannot move across the placenta. This separation prevents the mother’s cytotoxic T cells from reaching and subsequently destroying the fetus, which bears “non-self” antigens. Further, it ensures the fetal red blood cells do not enter the mother’s circulation and trigger antibody development (if they carry “non-self” antigens)—at least until the final stages of pregnancy or birth. This is the reason that, even in the absence of preventive treatment, an Rh mother doesn’t develop antibodies that could cause hemolytic disease in her first Rh + fetus.

Questions & Answers

what is hypoxia
Akas Reply
I guess it's low supply the oxygen to the tissues
famuyiwa
yup
Natalie
A condition in which tissues (especially the blood) are deprived of an adequate supply of oxygen
Panthera
hanifa pia uko hapa
Panthera
where is present Glenoid Cavity ?
A- Reply
what is the muscular tissue
Md Reply
muscular tissue is a type of tissue that provide to help in cotraction to aur body.
A-
What's the difference in epithelial, connective, muscular and muscle tissue
Gifty
and it's similarities
Gifty
what is limb bone
Akshu Reply
this are bone attaching or joining to the axial bone.axial bone including skull,vertebrate and ribcage
Eliasi
how many bones make up the skull?
Matthew
22 bones
Husna
22bones
Bhanu
where is present Glenoid cavity ?
A-
how many bone in skull
Md
Explain the stages of mitosis and cell division
Bella Reply
systems of human body
Udezue Reply
define lymphatic system And give the composition of lymphatic fluid
sakshi Reply
the network of vessels through which lymphatic drains From the tissue into blood.lymph contain variety of substance like salts, glucose, proteins and fatsand water, white blood cells
Bhanu
yeah
Hassan
what is lymphatic system
Adie Reply
the network of vessels through which lymph drains from tissue into the blood
Bhanu
to describe the boundaries of four cavity
Pius Reply
homeostatic variables such as body temperature fluctuates within a normal range around the set point, or ideal, for a given homeostatic condition. for example, 98.6°F is a set point for body temperature. The response of the effector determines whether or not the homeostatic variable remains in the n
Chidinma Reply
why rbc is biconcave?
Sudhakar Reply
to carry oxygen easily
anwaar
What part of the brain controls the body temp
Ridwan
hypothalamus
JAYESH
what are epithelial tissues
Sachibu Reply
epithelial tissue that cover overall parts of the body and it's free from blood and nerves
Bhanu
Epithelial tissues are composed of cells laid out in sheets with strong cell-to-cell attachments.
Duah
Epithelial tissues perform a variety of functions that include; protection, secretion, filtration, diffusion, absorption, etc.
Duah
what control the flow of the blood ?
Donkor Reply
the pumping action of the heart
Holly
what is bony promises on the human body
Kelly Reply
what is the bony promises on human body
Kelly
what are bony prominences on human body
Kelly
support of the body
Bhanu
what are the characteristics of blood
yeboah Reply
they are red in colour
Tawoi
why blood is red in color?
Sudhakar
blood is red because it contains hemoglobin
Abena

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask