<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the bones that articulate together to form selected synovial joints
  • Discuss the movements available at each joint
  • Describe the structures that support and prevent excess movements at each joint

Each synovial joint of the body is specialized to perform certain movements. The movements that are allowed are determined by the structural classification for each joint. For example, a multiaxial ball-and-socket joint has much more mobility than a uniaxial hinge joint. However, the ligaments and muscles that support a joint may place restrictions on the total range of motion available. Thus, the ball-and-socket joint of the shoulder has little in the way of ligament support, which gives the shoulder a very large range of motion. In contrast, movements at the hip joint are restricted by strong ligaments, which reduce its range of motion but confer stability during standing and weight bearing.

This section will examine the anatomy of selected synovial joints of the body. Anatomical names for most joints are derived from the names of the bones that articulate at that joint, although some joints, such as the elbow, hip, and knee joints are exceptions to this general naming scheme.

Articulations of the vertebral column

In addition to being held together by the intervertebral discs, adjacent vertebrae also articulate with each other at synovial joints formed between the superior and inferior articular processes called zygapophysial joints    (facet joints) (see [link] ). These are plane joints that provide for only limited motions between the vertebrae. The orientation of the articular processes at these joints varies in different regions of the vertebral column and serves to determine the types of motions available in each vertebral region. The cervical and lumbar regions have the greatest ranges of motions.

In the neck, the articular processes of cervical vertebrae are flattened and generally face upward or downward. This orientation provides the cervical vertebral column with extensive ranges of motion for flexion, extension, lateral flexion, and rotation. In the thoracic region, the downward projecting and overlapping spinous processes, along with the attached thoracic cage, greatly limit flexion, extension, and lateral flexion. However, the flattened and vertically positioned thoracic articular processes allow for the greatest range of rotation within the vertebral column. The lumbar region allows for considerable extension, flexion, and lateral flexion, but the orientation of the articular processes largely prohibits rotation.

The articulations formed between the skull, the atlas (C1 vertebra), and the axis (C2 vertebra) differ from the articulations in other vertebral areas and play important roles in movement of the head. The atlanto-occipital joint    is formed by the articulations between the superior articular processes of the atlas and the occipital condyles on the base of the skull. This articulation has a pronounced U-shaped curvature, oriented along the anterior-posterior axis. This allows the skull to rock forward and backward, producing flexion and extension of the head. This moves the head up and down, as when shaking your head “yes.”

Questions & Answers

blood is unique it is the only flueid tissue in the body
yeh
Ayoub
this is fascinating
mery
for real
Musa
what is blood
sujon Reply
lol. the red substance in your body. that circulates food nutrients and oxygen
Nii
Blood is composed of plasma and formed elements. The plasma is about 55% of blood and is about 80-90% water usually. The other 20-10% accounts for solutes such as ions, nutrients, gases, and hormones.
Carmelo
Blood is a fluid type of connective tissue and it's formed elements (cells) include RBC, WBC, and plalets.
Carmelo
what is sasamoid bone?
hafeez Reply
how many types of bone on the base of shape
hafeez
5
Husna
i want join the conversation
juwar Reply
Alright
Haya
feel free to do so
Vida
where are you from ?
Haya
hi what's up
Mar
well hello
emad
Im from kashmir,but I'm studying in punjab
Aabid
Hello
Aabid
I'm studying pharmacy at JUST University in jordan
emad
so am i emad 😅
shereen
afg
Ayoub
I am Javed Ali
Javedali
hello i am hafeez from gilgit
hafeez
explain the mechanism(release and control) of hormonal interplay for fluid and electrolyte.
Cassie Reply
There are three main ways in which hormones may be released. Humoral stimulus - occurs when their is an inbalance in electrolytes in the body. Neural stimulus - occurs when autonomic nerve fibers stimulate glands to release hormones.
Carmelo
Hormonal stimulus - occurs when a hormone causes another hormone to be released from another gland.
Carmelo
what are the main pumps found in the cell membrane
pauline Reply
calcium
Schmidt
sodium potassium pump
Husna
Differences between ligaments and catilage
joy Reply
differences between catilage and ligaments
joy
Both are different types of connective tissues. Second difference is that cartilage contains chondroblasts rather than fibroblasts. Their is also slight differences on their extracrullar matrix. For ex, cartilages tend to contain more collagen than tendons and ligaments.
Carmelo
Both types of connective tissue also function differently. Ligaments connect bone to bone, while cartilage have a variety of function like cushioning bones and giving structural support like on the nose and ears.
Carmelo
explain the causes of the refractory period of a nerve fiber
Sophia Reply
Refractory period immediately following stimulation during which a nerve or muscle is unresponsive to further stimulation. Brief pause in stimulus or excitation.
Nii
To add on, the brief pause is produced because of the event of establishing a resting membrane potential that needs to be produced before depolarization (another action potential) can occur again.
Carmelo
The refractory period also gives a chance for neurotransmitters to be replenished on the axon terminal.
Carmelo
what is hypoxia
Akas Reply
I guess it's low supply the oxygen to the tissues
famuyiwa
yup
Natalie
A condition in which tissues (especially the blood) are deprived of an adequate supply of oxygen
Panthera
hanifa pia uko hapa
Panthera
Hypoxia is the lack of oxygen concentration in the blood. Therefore, tissues will receive a low concentration of oxygen. Usually our bodies respond to Hypoxia by stimulating erythropoiesis in red bone marrow.
Carmelo
hypoxia is the lack of oxygen in blood absolutely.
hafeez
hypoxia: is a condition in wich the concentration of oxygen goes down in tissue or all over the body but the low concentration of oxygen in blood is called hypoxiemia.
Ayoub
where is present Glenoid Cavity ?
A- Reply
what is the muscular tissue
Md Reply
muscular tissue is a type of tissue that provide to help in cotraction to aur body.
A-
What's the difference in epithelial, connective, muscular and muscle tissue
Gifty
and it's similarities
Gifty
what is limb bone
Akshu Reply
this are bone attaching or joining to the axial bone.axial bone including skull,vertebrate and ribcage
Eliasi
how many bones make up the skull?
Matthew
22 bones
Husna
22bones
Bhanu
where is present Glenoid cavity ?
A-
how many bone in skull
Md
almost there are 8 bones in skull
hafeez
Explain the stages of mitosis and cell division
Bella Reply
Bella, this is a very long process to detail by text. However, to keep it brief, mitosis has four phases in order: prophase, metaphase, anaphase, and telophase which sometimes followed by cytokinesis. Note that some cells do not always do the cytokinesis phase.
Carmelo
As a result, some of the cells in the body are multinuclear (osteoclasts for ex).
Carmelo
explain further
Nana
difference between mitosis and meosis
Nana
systems of human body
Udezue Reply
define lymphatic system And give the composition of lymphatic fluid
sakshi Reply
the network of vessels through which lymphatic drains From the tissue into blood.lymph contain variety of substance like salts, glucose, proteins and fatsand water, white blood cells
Bhanu
yeah
Hassan

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask