<< Chapter < Page Chapter >> Page >

Although you might expect blood flow through a capillary bed to be smooth, in reality, it moves with an irregular, pulsating flow. This pattern is called vasomotion    and is regulated by chemical signals that are triggered in response to changes in internal conditions, such as oxygen, carbon dioxide, hydrogen ion, and lactic acid levels. For example, during strenuous exercise when oxygen levels decrease and carbon dioxide, hydrogen ion, and lactic acid levels all increase, the capillary beds in skeletal muscle are open, as they would be in the digestive system when nutrients are present in the digestive tract. During sleep or rest periods, vessels in both areas are largely closed; they open only occasionally to allow oxygen and nutrient supplies to travel to the tissues to maintain basic life processes.

Capillary bed

This diagram shows a capillary bed connecting an arteriole and a venule.
In a capillary bed, arterioles give rise to metarterioles. Precapillary sphincters located at the junction of a metarteriole with a capillary regulate blood flow. A thoroughfare channel connects the metarteriole to a venule. An arteriovenous anastomosis, which directly connects the arteriole with the venule, is shown at the bottom.

Venules

A venule    is an extremely small vein, generally 8–100 micrometers in diameter. Postcapillary venules join multiple capillaries exiting from a capillary bed. Multiple venules join to form veins. The walls of venules consist of endothelium, a thin middle layer with a few muscle cells and elastic fibers, plus an outer layer of connective tissue fibers that constitute a very thin tunica externa ( [link] ). Venules as well as capillaries are the primary sites of emigration or diapedesis, in which the white blood cells adhere to the endothelial lining of the vessels and then squeeze through adjacent cells to enter the tissue fluid.

Veins

A vein    is a blood vessel that conducts blood toward the heart. Compared to arteries, veins are thin-walled vessels with large and irregular lumens (see [link] ). Because they are low-pressure vessels, larger veins are commonly equipped with valves that promote the unidirectional flow of blood toward the heart and prevent backflow toward the capillaries caused by the inherent low blood pressure in veins as well as the pull of gravity. [link] compares the features of arteries and veins.

Comparison of veins and venules

The top panel shows the cross-section of a large vein, the middle panel shows the cross-section of a medium sized vein, and the bottom panel shows the cross-section of a venule.
Many veins have valves to prevent back flow of blood, whereas venules do not. In terms of scale, the diameter of a venule is measured in micrometers compared to millimeters for veins.
Comparison of Arteries and Veins
Arteries Veins
Direction of blood flow Conducts blood away from the heart Conducts blood toward the heart
General appearance Rounded Irregular, often collapsed
Pressure High Low
Wall thickness Thick Thin
Relative oxygen concentration Higher in systemic arteries
Lower in pulmonary arteries
Lower in systemic veins
Higher in pulmonary veins
Valves Not present Present most commonly in limbs and in veins inferior to the heart

Disorders of the…

Cardiovascular system: edema and varicose veins

Despite the presence of valves and the contributions of other anatomical and physiological adaptations we will cover shortly, over the course of a day, some blood will inevitably pool, especially in the lower limbs, due to the pull of gravity. Any blood that accumulates in a vein will increase the pressure within it, which can then be reflected back into the smaller veins, venules, and eventually even the capillaries. Increased pressure will promote the flow of fluids out of the capillaries and into the interstitial fluid. The presence of excess tissue fluid around the cells leads to a condition called edema.

Most people experience a daily accumulation of tissue fluid, especially if they spend much of their work life on their feet (like most health professionals). However, clinical edema goes beyond normal swelling and requires medical treatment. Edema has many potential causes, including hypertension and heart failure, severe protein deficiency, renal failure, and many others. In order to treat edema, which is a sign rather than a discrete disorder, the underlying cause must be diagnosed and alleviated.

Varicose veins

This photo shows a person’s leg.
Varicose veins are commonly found in the lower limbs. (credit: Thomas Kriese)

Edema may be accompanied by varicose veins, especially in the superficial veins of the legs ( [link] ). This disorder arises when defective valves allow blood to accumulate within the veins, causing them to distend, twist, and become visible on the surface of the integument. Varicose veins may occur in both sexes, but are more common in women and are often related to pregnancy. More than simple cosmetic blemishes, varicose veins are often painful and sometimes itchy or throbbing. Without treatment, they tend to grow worse over time. The use of support hose, as well as elevating the feet and legs whenever possible, may be helpful in alleviating this condition. Laser surgery and interventional radiologic procedures can reduce the size and severity of varicose veins. Severe cases may require conventional surgery to remove the damaged vessels. As there are typically redundant circulation patterns, that is, anastomoses, for the smaller and more superficial veins, removal does not typically impair the circulation. There is evidence that patients with varicose veins suffer a greater risk of developing a thrombus or clot.

Questions & Answers

where is present Glenoid Cavity ?
A- Reply
what is the muscular tissue
Md Reply
muscular tissue is a type of tissue that provide to help in cotraction to aur body.
A-
What's the difference in epithelial, connective, muscular and muscle tissue
Gifty
and it's similarities
Gifty
what is limb bone
Akshu Reply
this are bone attaching or joining to the axial bone.axial bone including skull,vertebrate and ribcage
Eliasi
how many bones make up the skull?
Matthew
22 bones
Husna
22bones
Bhanu
where is present Glenoid cavity ?
A-
how many bone in skull
Md
Explain the stages of mitosis and cell division
Bella Reply
systems of human body
Udezue Reply
define lymphatic system And give the composition of lymphatic fluid
sakshi Reply
the network of vessels through which lymphatic drains From the tissue into blood.lymph contain variety of substance like salts, glucose, proteins and fatsand water, white blood cells
Bhanu
yeah
Hassan
what is lymphatic system
Adie Reply
the network of vessels through which lymph drains from tissue into the blood
Bhanu
to describe the boundaries of four cavity
Pius Reply
homeostatic variables such as body temperature fluctuates within a normal range around the set point, or ideal, for a given homeostatic condition. for example, 98.6°F is a set point for body temperature. The response of the effector determines whether or not the homeostatic variable remains in the n
Chidinma Reply
why rbc is biconcave?
Sudhakar Reply
to carry oxygen easily
anwaar
What part of the brain controls the body temp
Ridwan
hypothalamus
JAYESH
what are epithelial tissues
Sachibu Reply
epithelial tissue that cover overall parts of the body and it's free from blood and nerves
Bhanu
Epithelial tissues are composed of cells laid out in sheets with strong cell-to-cell attachments.
Duah
Epithelial tissues perform a variety of functions that include; protection, secretion, filtration, diffusion, absorption, etc.
Duah
what control the flow of the blood ?
Donkor Reply
the pumping action of the heart
Holly
what is bony promises on the human body
Kelly Reply
what is the bony promises on human body
Kelly
what are bony prominences on human body
Kelly
support of the body
Bhanu
what are the characteristics of blood
yeboah Reply
they are red in colour
Tawoi
why blood is red in color?
Sudhakar
blood is red because it contains hemoglobin
Abena
Me phone no petandi meku doubt vunte nenu phone chesi cheputhanu
Mohan Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask