<< Chapter < Page Chapter >> Page >

Thyroid-stimulating hormone

The activity of the thyroid gland is regulated by thyroid-stimulating hormone (TSH)    , also called thyrotropin. TSH is released from the anterior pituitary in response to thyrotropin-releasing hormone (TRH) from the hypothalamus. As discussed shortly, it triggers the secretion of thyroid hormones by the thyroid gland. In a classic negative feedback loop, elevated levels of thyroid hormones in the bloodstream then trigger a drop in production of TRH and subsequently TSH.

Adrenocorticotropic hormone

The adrenocorticotropic hormone (ACTH)    , also called corticotropin, stimulates the adrenal cortex (the more superficial “bark” of the adrenal glands) to secrete corticosteroid hormones such as cortisol. ACTH come from a precursor molecule known as pro-opiomelanotropin (POMC) which produces several biologically active molecules when cleaved, including ACTH, melanocyte-stimulating hormone, and the brain opioid peptides known as endorphins.

The release of ACTH is regulated by the corticotropin-releasing hormone (CRH) from the hypothalamus in response to normal physiologic rhythms. A variety of stressors can also influence its release, and the role of ACTH in the stress response is discussed later in this chapter.

Follicle-stimulating hormone and luteinizing hormone

The endocrine glands secrete a variety of hormones that control the development and regulation of the reproductive system (these glands include the anterior pituitary, the adrenal cortex, and the gonads—the testes in males and the ovaries in females). Much of the development of the reproductive system occurs during puberty and is marked by the development of sex-specific characteristics in both male and female adolescents. Puberty is initiated by gonadotropin-releasing hormone (GnRH), a hormone produced and secreted by the hypothalamus. GnRH stimulates the anterior pituitary to secrete gonadotropins    —hormones that regulate the function of the gonads. The levels of GnRH are regulated through a negative feedback loop; high levels of reproductive hormones inhibit the release of GnRH. Throughout life, gonadotropins regulate reproductive function and, in the case of women, the onset and cessation of reproductive capacity.

The gonadotropins include two glycoprotein hormones: follicle-stimulating hormone (FSH)    stimulates the production and maturation of sex cells, or gametes, including ova in women and sperm in men. FSH also promotes follicular growth; these follicles then release estrogens in the female ovaries. Luteinizing hormone (LH) triggers ovulation in women, as well as the production of estrogens and progesterone by the ovaries. LH stimulates production of testosterone by the male testes.


As its name implies, prolactin (PRL)    promotes lactation (milk production) in women. During pregnancy, it contributes to development of the mammary glands, and after birth, it stimulates the mammary glands to produce breast milk. However, the effects of prolactin depend heavily upon the permissive effects of estrogens, progesterone, and other hormones. And as noted earlier, the let-down of milk occurs in response to stimulation from oxytocin.

In a non-pregnant woman, prolactin secretion is inhibited by prolactin-inhibiting hormone (PIH), which is actually the neurotransmitter dopamine, and is released from neurons in the hypothalamus. Only during pregnancy do prolactin levels rise in response to prolactin-releasing hormone (PRH) from the hypothalamus.

Intermediate pituitary: melanocyte-stimulating hormone

The cells in the zone between the pituitary lobes secrete a hormone known as melanocyte-stimulating hormone (MSH) that is formed by cleavage of the pro-opiomelanocortin (POMC) precursor protein. Local production of MSH in the skin is responsible for melanin production in response to UV light exposure. The role of MSH made by the pituitary is more complicated. For instance, people with lighter skin generally have the same amount of MSH as people with darker skin. Nevertheless, this hormone is capable of darkening of the skin by inducing melanin production in the skin’s melanocytes. Women also show increased MSH production during pregnancy; in combination with estrogens, it can lead to darker skin pigmentation, especially the skin of the areolas and labia minora. [link] is a summary of the pituitary hormones and their principal effects.

Major pituitary hormones

These two diagrammatic tables show the major pituitary hormones, their releasing hormone from the hypothalamus, their target organs, and their effects. The top part of the diagram shows the posterior pituitary hormones. ADH is produced by the hypothalamus and stored in the posterior pituitary. The targets of ADH are the kidneys, sweat glands and circulatory system, as this hormone affects water balance. OT is produced by the posterior pituitary and has no releasing hormone. Its target is the female reproductive system, as this hormone triggers uterine contractions during childbirth. The anterior pituitary hormones are listed in the lower diagram. The release of LH by the anterior pituitary is triggered by the release of GNRH from the hypothalamus. The target of LH is the reproductive system, as this hormone stimulates the production of sex hormones by the gonads. The release of FSH by the anterior pituitary is triggered by the release of GNRH from the hypothalamus. The target of FSH is the reproductive system, as this hormone stimulates the production of sperm and eggs. The release of TSH by the anterior pituitary is triggered by the release of TRH from the hypothalamus. The target of TSH is the thyroid gland, as this hormone stimulates the release of thyroid hormone (TH). TH regulates metabolism. The release of PRL by the anterior pituitary is triggered by the release of PRH and inhibited by the release of PIH from the hypothalamus. The target of PRL is the mammary glands, as this hormone promotes milk production. The release of GH by the anterior pituitary is triggered by the release of GHRH and inhibited by the release of GHIH from the hypothalamus. The targets of GH are the liver, bones and muscles, as it induces its targets to produce insulin-like growth factors (IGH), as this hormone stimulates body growth and a higher metabolic rate. The release of ACTH by the anterior pituitary is triggered by the release of CRH from the hypothalamus. The targets of ACTH are the adrenal glands, as this hormone induces its targets to produce glucocorticoids, which regulate metabolism and the stress response.
Major pituitary hormones and their target organs.

Visit this link to watch an animation showing the role of the hypothalamus and the pituitary gland. Which hormone is released by the pituitary to stimulate the thyroid gland?

Chapter review

The hypothalamus–pituitary complex is located in the diencephalon of the brain. The hypothalamus and the pituitary gland are connected by a structure called the infundibulum, which contains vasculature and nerve axons. The pituitary gland is divided into two distinct structures with different embryonic origins. The posterior lobe houses the axon terminals of hypothalamic neurons. It stores and releases into the bloodstream two hypothalamic hormones: oxytocin and antidiuretic hormone (ADH). The anterior lobe is connected to the hypothalamus by vasculature in the infundibulum and produces and secretes six hormones. Their secretion is regulated, however, by releasing and inhibiting hormones from the hypothalamus. The six anterior pituitary hormones are: growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL).

Visit this link to watch an animation showing the role of the hypothalamus and the pituitary gland. Which hormone is released by the pituitary to stimulate the thyroid gland?

Thyroid-stimulating hormone.

Got questions? Get instant answers now!

Questions & Answers

Name the two phases of metabolism
Grace Reply
reproduction and growth
how about anabolism and catabolism?
In Simply Anabolism means formation... Catabolism means breakdown
two phases of reproductio?
Anabolism indicates potential & catabolism potential converts to kinetic
Name the most important life process in the human body in terms of anatomy and physiology
Nervous system
Every system is important for body functions
what is the difference between the functions of the adhesion belt and the desmosomes?
Mason Reply
what are the derivatives of the germ layer?
Miriam Reply
Pls explain the atlas of the cervical vertebral column
Ifunanya Reply
why does the material not allow in mri
Simran Reply
what do you mean 'mri'
short for magnetic resonance imaging. "the researchers used MRI to record the brain activity" a medical examination performed using magnetic resonance imaging. "he's having an MRI to determine the extent of the injury" an image obtained by magnetic resonance imaging. "after looking at the MRI, the d
what is the meaning of sutures
Ibrahim Reply
i do not know
immovable joints btn two bones.eg the skull bones
Really,it's true
Sutures are immovable junction between two bones e.g those of the skull
what should I do to get or to know what to do for me to be excellent in the course of anatomy and physiology
Sandra Reply
study harder
Between the heart and the Brain which one is more important to human being... discuss
Faith Reply
well the brain is important for motor skills, the heart is important for involuntary muscle movement supporting body functions. the body can survive without brain involvement, but the body cannot last without the heart
granted the heart is important, but the brain gives the body purpose
the brain is more important
Even though the brain helps the human being to behave normally and purposefully, I think the heart is much more important cos human being cannot live without the heart
change the question
hello guys
it is difficult to select which organ is more important, now you can replace the heart with a mechanical device and the body could still function, and with technology today brain activity can also be replicated. But life would not be the same
there's coordination btn the two..so without any of them no life
the heart
The brain is important to humans.
what is homeostasis
Rebecca Reply
It is the condition when body feel comfortable
Wo feels hungry, thirty due to homeostasis
Is the maintenance of the internal environment of all the body cells for normal growth
what is the composition of saliva
Vijay Reply
ഫസ്റ്റ് ചാപ്റ്റർ ഇംപോർട്ടൻസ് പോസ്റ്റ്
Reshma Reply
nhi samjh aya
Nhi wt is this
I don't know
Okk wre frm u r
what is mean of? reshma
I don't know but would like to
D bone in d ankle joint re what ?
Ifunanya Reply
I thought that patella us the bone found in the knee cap
fib and tib join with tarsal form ankle joint
can one define a cell as a basic unit of a living organism
Michael Reply
cell is the structural and functional unit of living organisms
Which of the following hormones are responsible for the adolescent growth spurt? estrogen and testosterone, even in women?
Kepa Reply
estrogen hormone
yes estrogen hormone
What is sling give d characteristics of sling uses of sling
adamu Reply
a sling a rope used in hunting ie throwing of rocks

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?