<< Chapter < Page Chapter >> Page >

The microscopic structural unit of compact bone is called an osteon    , or Haversian system. Each osteon is composed of concentric rings of calcified matrix called lamellae (singular = lamella). Running down the center of each osteon is the central canal    , or Haversian canal, which contains blood vessels, nerves, and lymphatic vessels. These vessels and nerves branch off at right angles through a perforating canal    , also known as Volkmann’s canals, to extend to the periosteum and endosteum.

The osteocytes are located inside spaces called lacunae (singular = lacuna), found at the borders of adjacent lamellae. As described earlier, canaliculi connect with the canaliculi of other lacunae and eventually with the central canal. This system allows nutrients to be transported to the osteocytes and wastes to be removed from them.

Spongy (cancellous) bone

Like compact bone, spongy bone    , also known as cancellous bone, contains osteocytes housed in lacunae, but they are not arranged in concentric circles. Instead, the lacunae and osteocytes are found in a lattice-like network of matrix spikes called trabeculae    (singular = trabecula) ( [link] ). The trabeculae may appear to be a random network, but each trabecula forms along lines of stress to provide strength to the bone. The spaces of the trabeculated network provide balance to the dense and heavy compact bone by making bones lighter so that muscles can move them more easily. In addition, the spaces in some spongy bones contain red marrow, protected by the trabeculae, where hematopoiesis occurs.

Diagram of spongy bone

This illustration shows the spongy bone within the proximal epiphysis of the femur in two successively magnified images. The lower-magnification image shows two layers of crisscrossing trabeculae. The surface of each is dotted with small black holes which are the openings of the canaliculi. One of the trabeculae is in a cross section to show its internal layers. The outermost covering of the lamellae is called the endosteum. This endosteum surrounds several layers of concentric lamellae. The higher-magnification image shows the cross section of the trabeculae more clearly. Three concentric lamellae are shown in this view, each possessing perpendicular black lines. These lines are the canaliculi and are oriented on the round lamellae similar to the spokes of a wheel. In between the lamellae are small cavities called lacunae which house cells called osteocytes. In addition, two large osteoclasts are seated on the outer edge of the outermost lamellae. The outermost lamellae are also surrounded by groups of small, white, osteoblasts.
Spongy bone is composed of trabeculae that contain the osteocytes. Red marrow fills the spaces in some bones.

Aging and the…

Skeletal system: paget’s disease

Paget’s disease usually occurs in adults over age 40. It is a disorder of the bone remodeling process that begins with overactive osteoclasts. This means more bone is resorbed than is laid down. The osteoblasts try to compensate but the new bone they lay down is weak and brittle and therefore prone to fracture.

While some people with Paget’s disease have no symptoms, others experience pain, bone fractures, and bone deformities ( [link] ). Bones of the pelvis, skull, spine, and legs are the most commonly affected. When occurring in the skull, Paget’s disease can cause headaches and hearing loss.

Paget's disease

This illustration shows the normal skeletal structure of the legs from an anterior view. The flesh of the legs and feet are outlined around the skeleton for reference. A second illustration shows the legs of someone with Paget’s disease. The affected person’s left femur is curved outward, causing the left leg to be bowed and shorter than the right leg.
Normal leg bones are relatively straight, but those affected by Paget’s disease are porous and curved.

What causes the osteoclasts to become overactive? The answer is still unknown, but hereditary factors seem to play a role. Some scientists believe Paget’s disease is due to an as-yet-unidentified virus.

Paget’s disease is diagnosed via imaging studies and lab tests. X-rays may show bone deformities or areas of bone resorption. Bone scans are also useful. In these studies, a dye containing a radioactive ion is injected into the body. Areas of bone resorption have an affinity for the ion, so they will light up on the scan if the ions are absorbed. In addition, blood levels of an enzyme called alkaline phosphatase are typically elevated in people with Paget’s disease.

Bisphosphonates, drugs that decrease the activity of osteoclasts, are often used in the treatment of Paget’s disease. However, in a small percentage of cases, bisphosphonates themselves have been linked to an increased risk of fractures because the old bone that is left after bisphosphonates are administered becomes worn out and brittle. Still, most doctors feel that the benefits of bisphosphonates more than outweigh the risk; the medical professional has to weigh the benefits and risks on a case-by-case basis. Bisphosphonate treatment can reduce the overall risk of deformities or fractures, which in turn reduces the risk of surgical repair and its associated risks and complications.

Blood and nerve supply

The spongy bone and medullary cavity receive nourishment from arteries that pass through the compact bone. The arteries enter through the nutrient foramen    (plural = foramina), small openings in the diaphysis ( [link] ). The osteocytes in spongy bone are nourished by blood vessels of the periosteum that penetrate spongy bone and blood that circulates in the marrow cavities. As the blood passes through the marrow cavities, it is collected by veins, which then pass out of the bone through the foramina.

In addition to the blood vessels, nerves follow the same paths into the bone where they tend to concentrate in the more metabolically active regions of the bone. The nerves sense pain, and it appears the nerves also play roles in regulating blood supplies and in bone growth, hence their concentrations in metabolically active sites of the bone.

Diagram of blood and nerve supply to bone

This illustration shows an anterior view if the right femur. The femur is split in half lengthwise to show its internal anatomy. The outer covering of the femur is labeled the periosteum. Within it is a thin layer of compact bone that surrounds a central cavity called the medullary or marrow cavity. This cavity is filled with spongy bone at both epiphyses. A nutrient artery and vein travels through the periosteum and compact bone at the center of the diaphysis. After entering the bone, the nutrient arteries and veins spread throughout the marrow cavity in both directions. Some of the arteries and veins in the marrow cavity also spread into the spongy bone within the distal and proximal epiphyses. However, additional blood vessels called the metaphyseal arteries and the metaphyseal veins enter into the metaphysis from outside of the bone.
Blood vessels and nerves enter the bone through the nutrient foramen.

Watch this video to see the microscopic features of a bone.

Chapter review

A hollow medullary cavity filled with yellow marrow runs the length of the diaphysis of a long bone. The walls of the diaphysis are compact bone. The epiphyses, which are wider sections at each end of a long bone, are filled with spongy bone and red marrow. The epiphyseal plate, a layer of hyaline cartilage, is replaced by osseous tissue as the organ grows in length. The medullary cavity has a delicate membranous lining called the endosteum. The outer surface of bone, except in regions covered with articular cartilage, is covered with a fibrous membrane called the periosteum. Flat bones consist of two layers of compact bone surrounding a layer of spongy bone. Bone markings depend on the function and location of bones. Articulations are places where two bones meet. Projections stick out from the surface of the bone and provide attachment points for tendons and ligaments. Holes are openings or depressions in the bones.

Bone matrix consists of collagen fibers and organic ground substance, primarily hydroxyapatite formed from calcium salts. Osteogenic cells develop into osteoblasts. Osteoblasts are cells that make new bone. They become osteocytes, the cells of mature bone, when they get trapped in the matrix. Osteoclasts engage in bone resorption. Compact bone is dense and composed of osteons, while spongy bone is less dense and made up of trabeculae. Blood vessels and nerves enter the bone through the nutrient foramina to nourish and innervate bones.

Questions & Answers

what are the characteristics of blood
yeboah Reply
they are red in colour
Tawoi
Me phone no petandi meku doubt vunte nenu phone chesi cheputhanu
Mohan Reply
What is respiratory disease
Rita Reply
What are the importance of homeostasis in human body?
Pablo Reply
homeostasis
Abena
it help to keep our salt and water balance
Husna
Homeostasis regulates and mentain internal equilibrium (ie temperature and pH) of the body.
Edmund
maintain temp and ph so our enzyme works properly
Husna
The inability of the body regulating and maintaining the temp. and pH results in disease affection.
Edmund
formation of the bone
Ali Reply
.
mohamed
عاوز ايه يعني من الفورمايشن
Doctor
notes on cell theory and discovery
Masika Reply
Cell theory are a set of rules for overall knowledge on cells. The most famous set of rules include: All cells arise from other cells. The cell is the functional unit of life. The structure (organelles) and morphology of the cell indicates it's main functions.
Carmelo
Antonie Van L. was the first to actually observe alive microorganisms (such as protist and bacteria) in a microscope in the 1600s.
Carmelo
electro phisiology meand
aparna Reply
rouleaux formation factors
Hridya Reply
can anyone suggest me how to learn forearm and hand topic of anatomy?
Anjali Reply
can anyone suggest me how to learn forearm and hand anatomy topic?
Anjali
can anyone suggest me how to learn forearm and hand topic of anatomy? pls pls tell
Anjali
check out youtube videos for trickss and while learning the boness part keep the bone wid u and learn ..... hope it helps u
Subuhi
ohk
Anjali
formation of the bone
Ali
what is the space between d dura mater and pia mater
Uwakwe Reply
Subdural space
Juveriya
Actually sub dural space is space between dura and arachnoid mater And sub arachnoid space is space between arachnoid and pia mater
Juveriya
the smallest bone in the body
Bahja Reply
stapes is the smallest bone in human Body
dipayan
Yeah
Ridwan
what is cell membrane
Hajara
cell membrane is like a protective cover of a cell and it's cytoplasm
dipayan
thanks
Hajara
list two adpitive mechanism that control homeostasis condition
Hajara
positive and negative feedback Mechanism
dipayan
@Dipayan, a cell membrane encloses and surrounds the cytoplasm of the cell. It's structure varies between species of life (eukaryotes, archaea, bacteria), but it is mostly composed of phospholipid, arachidonic acid, proteins, glycoproteins, glycolipids, and cholesterol.
Carmelo
and the glycoprotein and polysaccharides of the cell membrane forms the glycocalyx which has several functions especially in a bacteria.
Norom
can we stain sputum samples?
Apai Reply
Yes
Dorcas
wat do we use in staining them?
Apai
gram stain
Mawuli
Hello
bona
zeel Nelson stain
bona
why the ganglion cyst bumps?
dipayan Reply
i think fats gather under the skin
Matthew
but there were some tissue is present
dipayan
plz Matthew clearly present your answer
dipayan
appilied physiology of umn and lmn lesion
Ananthan Reply
what is umn and imn
dipayan
I don't know
bona
saaa
Patricia
Upper motor neurons (UMN) are responsible for conveying impulses for voluntary motor activity through descending motor pathways that make up the upper motor neurons. UMN send fibers to the LMN, and that exert direct or indirect supranuclear control over the LMN of the cranial and spinal nerves.
Amit
What is your doubt
Mohan
Anatomy of functions of the skeletal system
Tobokwa Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask