<< Chapter < Page Chapter >> Page >

Antidiuretic hormone (adh)

Diuretics are drugs that can increase water loss by interfering with the recapture of solutes and water from the forming urine. They are often prescribed to lower blood pressure. Coffee, tea, and alcoholic beverages are familiar diuretics. ADH, a 9-amino acid peptide released by the posterior pituitary, works to do the exact opposite. It promotes the recovery of water, decreases urine volume, and maintains plasma osmolarity and blood pressure. It does so by stimulating the movement of aquaporin proteins into the apical cell membrane of principal cells of the collecting ducts to form water channels, allowing the transcellular movement of water from the lumen of the collecting duct into the interstitial space in the medulla of the kidney by osmosis. From there, it enters the vasa recta capillaries to return to the circulation. Water is attracted by the high osmotic environment of the deep kidney medulla.

Endothelin

Endothelins , 21-amino acid peptides, are extremely powerful vasoconstrictors. They are produced by endothelial cells of the renal blood vessels, mesangial cells, and cells of the DCT. Hormones stimulating endothelin release include angiotensin II, bradykinin, and epinephrine. They do not typically influence blood pressure in healthy people. On the other hand, in people with diabetic kidney disease, endothelin is chronically elevated, resulting in sodium retention. They also diminish GFR by damaging the podocytes and by potently vasoconstricting both the afferent and efferent arterioles.

Natriuretic hormones

Natriuretic hormones are peptides that stimulate the kidneys to excrete sodium—an effect opposite that of aldosterone. Natriuretic hormones act by inhibiting aldosterone release and therefore inhibiting Na + recovery in the collecting ducts. If Na + remains in the forming urine, its osmotic force will cause a concurrent loss of water. Natriuretic hormones also inhibit ADH release, which of course will result in less water recovery. Therefore, natriuretic peptides inhibit both Na + and water recovery. One example from this family of hormones is atrial natriuretic hormone (ANH), a 28-amino acid peptide produced by heart atria in response to over-stretching of the atrial wall. The over-stretching occurs in persons with elevated blood pressure or heart failure. It increases GFR through concurrent vasodilation of the afferent arteriole and vasoconstriction of the efferent arteriole. These events lead to an increased loss of water and sodium in the forming urine. It also decreases sodium reabsorption in the DCT. There is also B-type natriuretic peptide (BNP) of 32 amino acids produced in the ventricles of the heart. It has a 10-fold lower affinity for its receptor, so its effects are less than those of ANH. Its role may be to provide “fine tuning” for the regulation of blood pressure. BNP’s longer biologic half-life makes it a good diagnostic marker of congestive heart failure ( [link] ).

Parathyroid hormone

Parathyroid hormone (PTH) is an 84-amino acid peptide produced by the parathyroid glands in response to decreased circulating Ca ++ levels. Among its targets is the PCT, where it stimulates the hydroxylation of calcidiol to calcitriol (1,25-hydroxycholecalciferol, the active form of vitamin D). It also blocks reabsorption of phosphate (PO 3 ), causing its loss in the urine. The retention of phosphate would result in the formation of calcium phosphate in the plasma, reducing circulating Ca ++ levels. By ridding the blood of phosphate, higher circulating Ca ++ levels are permitted.

Major hormones that influence gfr and rfb

This table shows the stimulus, effect on GFR (glomerular filtration rate), and effect on RBF (renal blood flow) for a variety of vasoconstrictors and vasodilators. The first vasoconstrictor is input from the sympathetic nerves that result in the secretion of epinephrine and norepinephrine. The stimulus is a decrease in extracellular fluid volume (ECFV). The second vasoconstrictor is angiotensin II. The stimulus is a decrease in ECFV. The third vasoconstrictor is endothelin. The stimulus is an increase in stretch, bradykinin, angiotensin II, and epinephrine along with a decrease in ECFV. All three of these vasoconstrictors decrease GFR and also decrease RBF. The first vasodilator is the prostaglandins PGE1, PGE2, and PGI2. The stimulus is a decrease in ECFV, an increase in shear stress, and  an increase in angiotensin II. The second vasodilator is nitric oxide (NO). The stimulus is increasing shear stress, acetylcholine, histamine, bradykinin, ATP, and adenosine. The third vasodilator is bradykinin. The stimulus is the presence of prostaglandins and a decrease in angiotensin-converting enzyme. The fourth vasodilator is natriuretic peptides, including ANP and B-type. The stimulus is an increase in ECFV. All four of the vasodilators increase GFR and also increase RBF, with the exception of the natriuretic peptides, which cause no change in RBF. Prostaglandins also either increase or have no effect on GFR.

Chapter review

Endocrine hormones act from a distance and paracrine hormones act locally. The renal enzyme renin converts angiotensinogen into angiotensin I. The lung enzyme, ACE, converts angiotensin I into active angiotensin II. Angiotensin II is an active vasoconstrictor that increases blood pressure. Angiotensin II also stimulates aldosterone release from the adrenal cortex, causing the collecting duct to retain Na + , which promotes water retention and a longer-term rise in blood pressure. ADH promotes water recovery by the collecting ducts by stimulating the insertion of aquaporin water channels into cell membranes. Endothelins are elevated in cases of diabetic kidney disease, increasing Na + retention and decreasing GFR. Natriuretic hormones, released primarily from the atria of the heart in response to stretching of the atrial walls, stimulate Na + excretion and thereby decrease blood pressure. PTH stimulates the final step in the formation of active vitamin D3 and reduces phosphate reabsorption, resulting in higher circulating Ca ++ levels.

Questions & Answers

Card 5 / 12: For whom would an appreciation of the structural characteristics of the human heart come more easily: an alien who lands on Earth, abducts a human, and dissects his heart, or an anatomy and physiology student performing a dissection of the heart on her very first day of class? Why?
Gelowe Reply
what are regular shaped cells with granules in the cytoplasam
Kabita Reply
PMNL
Dinu
I need sylubuss of clinical officers book
Omary Reply
cholesterol normal value is
BISWANATH Reply
less than 200mg/dl
Ashis
100 to159mg/dL
Dinu
Early this wk. I had some "A & P" questions & answers unfortunately didn't save them, Is there any way I can have them back ,so as 2 save them?. Thnx.
Kechi
what are the functions of the female reproductive system
Lister Reply
it produces the female egg necessary for reproduction, called the Ova or Oocytes. The system is designed to transport the Ova to the site of fertilization.
Kechi
Female reproductive system was mainly functioned to produce ova(ovum) (female eggs) Into which will be fertilized by male gamete to produce zygote
Omary
absolutely right
nimco
wa qalad nimco rage iska hubi
Khaliil
waxwalba ka fikirbay ubaahantahay
Ahmed
ha wayo jawabtoda wa qabyo nimco wey ku raacdat
Khaliil
ha wayo jawabtoda wa qabyo nimco wey ku raacday
Khaliil
wxayaabaha qaarkood waaa in aan u feejignaano
Ahmed
asc if I try female reproductive system has two function the first is to produce egg cell and the second is to protact and nourish the offspring until birth
Muriidi
what is stercobilinogen
Hancerich Reply
fecal urobilinogen. Created by bacteria in the gut. a chemical that gives feces brown color.
Blayne
next question pls.
Kechi
The rate of diffusion increases if the
stella
What's the answer?
Kechi
it's a breaking down of haemoglobin and it's a chemical made by bacteria
Dev
Thnx Dev Raj.
Kechi
yup so any more
Dev
yes I sure do need more "Questions" & "Answers". I'm learning whole lot. Thnx.
Kechi
what is the greatest muscle of the body
Lungu Reply
gluteus maximus
ABDULLAH
pls!!! more "A&P" questions & answers. Thnx.
Kechi
Gluteus maximus
THE
Describe anatomy of cardiovascular system?
cardiovascular system is a group of organs coming together to perform the circulation of blood. The organs invoked are the heart and the blood vessels with blood being the tissue. The heart is a pump and it pumps oxygenated blood through the systemic circuit and deoxygenated blood through the pulmon
bernard
pulmonary circuit.
bernard
more A&P questions pls. Thnx.
Kechi
If an ANOVA yields a significant F value, you could rely on ________ to test significant differences between group means.
Dane Reply
what's ANOVA
Cassandra
analysis of variance
Blayne
plz what you mean with "ANOVA" first
Fatima
anova means analysis of variance, a statistical method in which the variation in a set of observations is divided into distinct components.
Blayne
M value ot test
ABDULLAH
What does it mean by M value ot test?
Orpha
formation of red blood cells
Biketi Reply
explain why... lower back pain in ovarian cancer
Srijoni Reply
we says that protoplasm is the living part of us How?
Muzamil Reply
is the leaving part of our cellular structure.
Eric
it is the leaving part of our blood cellular structure also
ABDULLAH
what is receptor?
Preity Reply
an organ or cell able to respond to light, heat, or other external stimulus and transmit a signal to a sensory nerve.
Jessi
Has anyone taken the first exam?
Sandra
yes
yahye
yes
Allan
hey what is the process after your food is swallowed? how long does it take to get to the stomache until it is released as waste?
Fednise Reply
that is such a broad question. as you begin to swallow its various doses down the alimentary canal that brings the food into your stomach.then depending on whether it's a protein carbohydrate fat that dictates what function takes place in your stomach. these are all steps of digestion.
Joseph
typo sorry it's peristalsis , wave-like projections that push food down your alimentary canal etc. digestion starts in your mouth ends in your large intestines (colon anus)
Joseph
some of the many processes of digestion include hydrolysis dehydration synthesis denaturation of proteins etc. you have to be more specific.
Joseph
there's many different contributing factors the how long it takes food to convert into waste. remember fats, triglycerides proteins and carbohydrates all breakdown two different monomers and structures. you should be looking up metabolic processes.
Joseph
depending how much fiber you have in your diet dictates how much water is brought to your intestines that has to do with excretion whether fiber is insoluble or soluble. this is an anatomy and physiology app. to simply say the stomach will empty its contents in 2 to 3 hours would do you a disservice
Joseph
can the study of anatomy relate to medical technologies
Lean Reply
yes
Khh
absolutely
Jessi
yes...
Sherif
how can I understand micro biology and anatomy better.
Cassandra
yes
Kevin
someone to help me understand glycogeneogenesis
abel
what are the major branches of the aorta?
Kevin
look youtube video
Jessi

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask