<< Chapter < Page Chapter >> Page >

As we discuss osmotic pressure in blood and tissue fluid, it is important to recognize that the formed elements of blood do not contribute to osmotic concentration gradients. Rather, it is the plasma proteins that play the key role. Solutes also move across the capillary wall according to their concentration gradient, but overall, the concentrations should be similar and not have a significant impact on osmosis. Because of their large size and chemical structure, plasma proteins are not truly solutes, that is, they do not dissolve but are dispersed or suspended in their fluid medium, forming a colloid rather than a solution.

The pressure created by the concentration of colloidal proteins in the blood is called the blood colloidal osmotic pressure (BCOP)    . Its effect on capillary exchange accounts for the reabsorption of water. The plasma proteins suspended in blood cannot move across the semipermeable capillary cell membrane, and so they remain in the plasma. As a result, blood has a higher colloidal concentration and lower water concentration than tissue fluid. It therefore attracts water. We can also say that the BCOP is higher than the interstitial fluid colloidal osmotic pressure (IFCOP)    , which is always very low because interstitial fluid contains few proteins. Thus, water is drawn from the tissue fluid back into the capillary, carrying dissolved molecules with it. This difference in colloidal osmotic pressure accounts for reabsorption.

Interaction of hydrostatic and osmotic pressures

The normal unit used to express pressures within the cardiovascular system is millimeters of mercury (mm Hg). When blood leaving an arteriole first enters a capillary bed, the CHP is quite high—about 35 mm Hg. Gradually, this initial CHP declines as the blood moves through the capillary so that by the time the blood has reached the venous end, the CHP has dropped to approximately 18 mm Hg. In comparison, the plasma proteins remain suspended in the blood, so the BCOP remains fairly constant at about 25 mm Hg throughout the length of the capillary and considerably below the osmotic pressure in the interstitial fluid.

The net filtration pressure (NFP)    represents the interaction of the hydrostatic and osmotic pressures, driving fluid out of the capillary. It is equal to the difference between the CHP and the BCOP. Since filtration is, by definition, the movement of fluid out of the capillary, when reabsorption is occurring, the NFP is a negative number.

NFP changes at different points in a capillary bed ( [link] ). Close to the arterial end of the capillary, it is approximately 10 mm Hg, because the CHP of 35 mm Hg minus the BCOP of 25 mm Hg equals 10 mm Hg. Recall that the hydrostatic and osmotic pressures of the interstitial fluid are essentially negligible. Thus, the NFP of 10 mm Hg drives a net movement of fluid out of the capillary at the arterial end. At approximately the middle of the capillary, the CHP is about the same as the BCOP of 25 mm Hg, so the NFP drops to zero. At this point, there is no net change of volume: Fluid moves out of the capillary at the same rate as it moves into the capillary. Near the venous end of the capillary, the CHP has dwindled to about 18 mm Hg due to loss of fluid. Because the BCOP remains steady at 25 mm Hg, water is drawn into the capillary, that is, reabsorption occurs. Another way of expressing this is to say that at the venous end of the capillary, there is an NFP of −7 mm Hg.

Capillary exchange

This diagram shows the process of fluid exchange in a capillary from the arterial end to the venous end.
Net filtration occurs near the arterial end of the capillary since capillary hydrostatic pressure (CHP) is greater than blood colloidal osmotic pressure (BCOP). There is no net movement of fluid near the midpoint since CHP = BCOP. Net reabsorption occurs near the venous end since BCOP is greater than CHP.

The role of lymphatic capillaries

Since overall CHP is higher than BCOP, it is inevitable that more net fluid will exit the capillary through filtration at the arterial end than enters through reabsorption at the venous end. Considering all capillaries over the course of a day, this can be quite a substantial amount of fluid: Approximately 24 liters per day are filtered, whereas 20.4 liters are reabsorbed. This excess fluid is picked up by capillaries of the lymphatic system. These extremely thin-walled vessels have copious numbers of valves that ensure unidirectional flow through ever-larger lymphatic vessels that eventually drain into the subclavian veins in the neck. An important function of the lymphatic system is to return the fluid (lymph) to the blood. Lymph may be thought of as recycled blood plasma . (Seek additional content for more detail on the lymphatic system.)

Watch this video to explore capillaries and how they function in the body. Capillaries are never more than 100 micrometers away. What is the main component of interstitial fluid?

Chapter review

Small molecules can cross into and out of capillaries via simple or facilitated diffusion. Some large molecules can cross in vesicles or through clefts, fenestrations, or gaps between cells in capillary walls. However, the bulk flow of capillary and tissue fluid occurs via filtration and reabsorption. Filtration, the movement of fluid out of the capillaries, is driven by the CHP. Reabsorption, the influx of tissue fluid into the capillaries, is driven by the BCOP. Filtration predominates in the arterial end of the capillary; in the middle section, the opposing pressures are virtually identical so there is no net exchange, whereas reabsorption predominates at the venule end of the capillary. The hydrostatic and colloid osmotic pressures in the interstitial fluid are negligible in healthy circumstances.

Watch this video to explore capillaries and how they function in the body. Capillaries are never more than 100 micrometers away. What is the main component of interstitial fluid?

Water.

Got questions? Get instant answers now!

Questions & Answers

Differentiate between pharmacist and apothecary
adanoor Reply
What is metatarsal
Ndotenyin Reply
bone of the foot is known as metatarsal
Patrick
yes 👆 right
Sneha
metatarsal (foot bone).....👍
Rishi
what is the meaning for cadavers
Malar
yes metatarsal are foot bone
Rakiya
the term "mental" pertain to which of the following a. chin b.navel c. ear d. nose e. skull
cris Reply
a
Lina
chin
Sneha
hi
Mohamed
skull
Monica
skull
Peter
chin
Kelly
skull
Juma
skull
Gul
skull
Laraib
skull
anwaar
skull
Nirmala
skull
Tessmol
chin
Derrick
mental chin nerve
Katarzyna
e. skull
Jennifer
skull
prince
e. skull
Natasha
It's not skull but chin
mwango
the skull
Rakiya
what are the three many components of the lymphatic system?
Milica Reply
those are...... organ, tissue and blood capillary or vessals
Juma
anatomical terms and use them appropriatly in the language of anatomy of anterior body landmarks
Teody Reply
what is human anatomy?
rascal Reply
lts stady structured human body's
Sa
what is the study of how the body functions?
Bright
What is human anatomy
Sherifat
human antomy is the body of structure
Malar
is the study of human body
Rakiya
what is abdomipelvic cavity?
david Reply
Includes all organs within the abdomen(stomach,intestines) and those from the pelvic region hence the name... abdomipelvic
Maureen
where can we find the short bones
Chidi Reply
Carpal bones are examples of short bones
Dara
what is blood supply
Chidi
on upper limb and lower limb
Juma
carpal bones
Priya
during pregnancy which would more increase size the mothers abdominal or pelvic cavity?
Nurmalyn Reply
pelvic cavity I think
Priya
What is anatomical position
Nwoye
pelvic
Maureen
@ Nwoye... when standing erect, feet parallel, arms hanging at the sides with palms facing forward
Maureen
The pelvic cavity
Rakiya
pelvic
Malar
define the main directional terms of the body
cris Reply
during physical exercise respiratory rate increace two student are discussing the mechanisms involved. student A claim they are positive feedback and student B claim negative feedback do you agree with student A or B and why
cris
what is the physiology of circulation
Chidi
please I mean the physiology of criculation
Chidi
blood flow refers to the movement of blood through the vessels from arteries to the capillaries and then to the veins
Laraib
the heart&the lungs
Rakiya
during pregnancy, which would more size the mother's abdominal or pelvic cavity? explain
cris Reply
list and define the three plane of devision of the body
cris
complete the following statements using correct directional terms for human being. 1. the navel is________to the nose 2. the heart is______to the breastbone(sternum) 3 the ankle is______to the knee 4 the ear is______to the eyes.
cris
1. superior 2. posterior 3. superior 4. lateral
Mnm
anterior fuerior
Chidi
inferior medial posterior lateral we
Susan
name the system of the body and its function
cris Reply
11 system are human body 1.integumentary system 2. skeletal system 3. muscular system 4. nervous system 5. endocrine system 6. cardiovascular system 7. lymphatic system 8. respiratory system 9. digestive system 10. urinary system 11. reproductive system male and female.
Vineeta
during pregnancy, which would more size the mother's abdominal or pelvic cavity? explain
cris
how the body maintain hormeostasis in terms of bloodglucose level
cris Reply
It releases hormones from the pancreas insulin and glucagon
TONY
why human blood pressure high
amin Reply
fear, anxiety, sickness
Inemesit
why in mothers womb the foetus head is in anus direction?
Kick
As it seems the position downside n if we did such position thn soon we got vomiting then how foetus stay in downward position long time?
Kick
What is red blood cell
HANNAH Reply
A type of blood cell that is made in the bone marrow and found in the blood. Red blood cells contain a protein called hemoglobin, which carries oxygen from the lungs to all parts of the body. Checking the number of red blood cells in the blood is usually part of a complete blood cell (CBC) test. It
Noor
red blood cell are the most numerous blood cells.they comprise about 99% of all blood cells red blood cells are non nucleated it has red colour due to present to hemoglobin.
Vineeta
Thanks for the answers
HANNAH

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask