<< Chapter < Page Chapter >> Page >

In general, the nervous system involves quick responses to rapid changes in the external environment, and the endocrine system is usually slower acting—taking care of the internal environment of the body, maintaining homeostasis, and controlling reproduction ( [link] ). So how does the fight-or-flight response that was mentioned earlier happen so quickly if hormones are usually slower acting? It is because the two systems are connected. It is the fast action of the nervous system in response to the danger in the environment that stimulates the adrenal glands to secrete their hormones. As a result, the nervous system can cause rapid endocrine responses to keep up with sudden changes in both the external and internal environments when necessary.

Endocrine and Nervous Systems
Endocrine system Nervous system
Signaling mechanism(s) Chemical Chemical/electrical
Primary chemical signal Hormones Neurotransmitters
Distance traveled Long or short Always short
Response time Fast or slow Always fast
Environment targeted Internal Internal and external

Structures of the endocrine system

The endocrine system consists of cells, tissues, and organs that secrete hormones as a primary or secondary function. The endocrine gland    is the major player in this system. The primary function of these ductless glands is to secrete their hormones directly into the surrounding fluid. The interstitial fluid and the blood vessels then transport the hormones throughout the body. The endocrine system includes the pituitary, thyroid, parathyroid, adrenal, and pineal glands ( [link] ). Some of these glands have both endocrine and non-endocrine functions. For example, the pancreas contains cells that function in digestion as well as cells that secrete the hormones insulin and glucagon, which regulate blood glucose levels. The hypothalamus, thymus, heart, kidneys, stomach, small intestine, liver, skin, female ovaries, and male testes are other organs that contain cells with endocrine function. Moreover, adipose tissue has long been known to produce hormones, and recent research has revealed that even bone tissue has endocrine functions.

Endocrine system

This diagram shows the endocrine glands and cells that are located throughout the body. The endocrine system organs include the pineal gland and pituitary gland in the brain. The pituitary is located on the anterior side of the thalamus while the pineal gland is located on the posterior side of the thalamus. The thyroid gland is a butterfly-shaped gland that wraps around the trachea within the neck. Four small, disc-shaped parathyroid glands are embedded into the posterior side of the thyroid. The adrenal glands are located on top of the kidneys. The pancreas is located at the center of the abdomen. In females, the two ovaries are connected to the uterus by two long, curved, tubes in the pelvic region. In males, the two testes are located in the scrotum below the penis.
Endocrine glands and cells are located throughout the body and play an important role in homeostasis.

The ductless endocrine glands are not to be confused with the body’s exocrine system    , whose glands release their secretions through ducts. Examples of exocrine glands include the sebaceous and sweat glands of the skin. As just noted, the pancreas also has an exocrine function: most of its cells secrete pancreatic juice through the pancreatic and accessory ducts to the lumen of the small intestine.

Other types of chemical signaling

In endocrine signaling, hormones secreted into the extracellular fluid diffuse into the blood or lymph, and can then travel great distances throughout the body. In contrast, autocrine signaling takes place within the same cell. An autocrine    (auto- = “self”) is a chemical that elicits a response in the same cell that secreted it. Interleukin-1, or IL-1, is a signaling molecule that plays an important role in inflammatory response. The cells that secrete IL-1 have receptors on their cell surface that bind these molecules, resulting in autocrine signaling.

Local intercellular communication is the province of the paracrine    , also called a paracrine factor, which is a chemical that induces a response in neighboring cells. Although paracrines may enter the bloodstream, their concentration is generally too low to elicit a response from distant tissues. A familiar example to those with asthma is histamine, a paracrine that is released by immune cells in the bronchial tree. Histamine causes the smooth muscle cells of the bronchi to constrict, narrowing the airways. Another example is the neurotransmitters of the nervous system, which act only locally within the synaptic cleft.

Career connections


Endocrinology is a specialty in the field of medicine that focuses on the treatment of endocrine system disorders. Endocrinologists—medical doctors who specialize in this field—are experts in treating diseases associated with hormonal systems, ranging from thyroid disease to diabetes mellitus. Endocrine surgeons treat endocrine disease through the removal, or resection, of the affected endocrine gland.

Patients who are referred to endocrinologists may have signs and symptoms or blood test results that suggest excessive or impaired functioning of an endocrine gland or endocrine cells. The endocrinologist may order additional blood tests to determine whether the patient’s hormonal levels are abnormal, or they may stimulate or suppress the function of the suspect endocrine gland and then have blood taken for analysis. Treatment varies according to the diagnosis. Some endocrine disorders, such as type 2 diabetes, may respond to lifestyle changes such as modest weight loss, adoption of a healthy diet, and regular physical activity. Other disorders may require medication, such as hormone replacement, and routine monitoring by the endocrinologist. These include disorders of the pituitary gland that can affect growth and disorders of the thyroid gland that can result in a variety of metabolic problems.

Some patients experience health problems as a result of the normal decline in hormones that can accompany aging. These patients can consult with an endocrinologist to weigh the risks and benefits of hormone replacement therapy intended to boost their natural levels of reproductive hormones.

In addition to treating patients, endocrinologists may be involved in research to improve the understanding of endocrine system disorders and develop new treatments for these diseases.

Chapter review

The endocrine system consists of cells, tissues, and organs that secrete hormones critical to homeostasis. The body coordinates its functions through two major types of communication: neural and endocrine. Neural communication includes both electrical and chemical signaling between neurons and target cells. Endocrine communication involves chemical signaling via the release of hormones into the extracellular fluid. From there, hormones diffuse into the bloodstream and may travel to distant body regions, where they elicit a response in target cells. Endocrine glands are ductless glands that secrete hormones. Many organs of the body with other primary functions—such as the heart, stomach, and kidneys—also have hormone-secreting cells.

Visit this link to watch an animation of the events that occur when a hormone binds to a cell membrane receptor. What is the secondary messenger made by adenylyl cyclase during the activation of liver cells by epinephrine?


Got questions? Get instant answers now!

Questions & Answers

Hi Be Home Be safe , how are things doing hope all is well
Natarajan Reply
3 longitudinal bands of smooth muscles found in large intestines
what's is sutures
Nimeshka Reply
what would I like to know
Roy Reply
anything u can tell me
anatomy mins
when two or more bones meet.
I am interested in learning but it is a little threatening corona virus covid 19
Samnang Reply
I don't know about Corona virus
what would you like to know?
what is a peripheral protien
Ayesha Reply
actually its located in between the lipid layer, it does not specify if it's closer to the inside or the outside of the cell
It is protein found in lipid bilayer but found attached with Cytoplasm aspect
what are the collection of blood.?
sunshine Reply
Effect of exercise on different body systems?
Rania Reply
what is ambroylogy
kashif Reply
embryology..is the biological studing of embryos
I know biological study but embryology mean any pic, example?
I like to learn about medical and more
what is the function of the blood
Yolanda Reply
Transporting of oxygen,fighting against germs, forms clotting ,distribution of nutrients and minerals through out the body ,
Transportation of gases such as oxygen and water blance and carrei metabolites to the exit organ and Acid base equilibrium and clotting blood and Immune
What are Gross and microscopicAnatomy
Waiswa Reply
study of the internal structures of a human being
gross anatomy is the study of body parts that can be seen with our naked eyes while micro anatomy involves the study of body parts that cannot be seen with our naked eyes but with the aid of a microscope
gross means examination of specimen or tissue with bare (unaided ) eye while microscopic means examination of same with the help of microscope
what is physiology
Waiswa Reply
what are blood pressure
physiology is the study of the normal functions of organs
Blood pressure is a when systolic phase is 190 and diastolic phase 90.
systolic phase is 180.not 190
explain the anatomy of the human heart
Maia Reply
is the scientific study of the body structure ie like structure very small which can be only observed.
where can I find the muscle organization
Taonga Reply
what is the physiology?
Josoph Reply
the study of functioning of body organs
In other words... Physiology is the study of normal function within living creatures. It is a sub-section of biology, covering a range of topics that include organs, anatomy, cells, biological compounds, and how they all interact to make life possible.
which part of the heart supply blood to all parts of the body
left heart supply all the body.
what analysisof an anatomy
Okay thanks distinguish between blood pressure and body organs
branch of anatomy which deal with the life process and function
how oxygen and carbondioxide are transported in the body.
riddon Reply
Through the lungs as we inhale oxygen it diffuses into the alveoli while carbon dioxide diffuses out of the blood and from our bodies
from lungs o2 diffuses into blood capillaries from where it is bound to heam part of hb there after it is transported to different parts of body ...co2 that is produced during respiration in cells gets transported to lungs from lungs it gets exhalated
o2 is mainly transported by hb present in blood while co2 is transported main as bicarbonate.. detailed topics

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?