<< Chapter < Page Chapter >> Page >

The absolute refractory period for cardiac contractile muscle lasts approximately 200 ms, and the relative refractory period lasts approximately 50 ms, for a total of 250 ms. This extended period is critical, since the heart muscle must contract to pump blood effectively and the contraction must follow the electrical events. Without extended refractory periods, premature contractions would occur in the heart and would not be compatible with life.

Action potential in cardiac contractile cells

The top panel of this figure shows millivolts as a function of time with the various stages labeled. The bottom left panel shows action potential and tension as a function of time for skeletal muscle, and the bottom right panel shows the action potential and tension as a function of time for cardiac muscle.
(a) Note the long plateau phase due to the influx of calcium ions. The extended refractory period allows the cell to fully contract before another electrical event can occur. (b) The action potential for heart muscle is compared to that of skeletal muscle.

Calcium ions

Calcium ions play two critical roles in the physiology of cardiac muscle. Their influx through slow calcium channels accounts for the prolonged plateau phase and absolute refractory period that enable cardiac muscle to function properly. Calcium ions also combine with the regulatory protein troponin in the troponin-tropomyosin complex; this complex removes the inhibition that prevents the heads of the myosin molecules from forming cross bridges with the active sites on actin that provide the power stroke of contraction. This mechanism is virtually identical to that of skeletal muscle. Approximately 20 percent of the calcium required for contraction is supplied by the influx of Ca 2+ during the plateau phase. The remaining Ca 2+ for contraction is released from storage in the sarcoplasmic reticulum.

Comparative rates of conduction system firing

The pattern of prepotential or spontaneous depolarization, followed by rapid depolarization and repolarization just described, are seen in the SA node and a few other conductive cells in the heart. Since the SA node is the pacemaker, it reaches threshold faster than any other component of the conduction system. It will initiate the impulses spreading to the other conducting cells. The SA node, without nervous or endocrine control, would initiate a heart impulse approximately 80–100 times per minute. Although each component of the conduction system is capable of generating its own impulse, the rate progressively slows as you proceed from the SA node to the Purkinje fibers. Without the SA node, the AV node would generate a heart rate of 40–60 beats per minute. If the AV node were blocked, the atrioventricular bundle would fire at a rate of approximately 30–40 impulses per minute. The bundle branches would have an inherent rate of 20–30 impulses per minute, and the Purkinje fibers would fire at 15–20 impulses per minute. While a few exceptionally trained aerobic athletes demonstrate resting heart rates in the range of 30–40 beats per minute (the lowest recorded figure is 28 beats per minute for Miguel Indurain, a cyclist), for most individuals, rates lower than 50 beats per minute would indicate a condition called bradycardia. Depending upon the specific individual, as rates fall much below this level, the heart would be unable to maintain adequate flow of blood to vital tissues, initially resulting in decreasing loss of function across the systems, unconsciousness, and ultimately death.

Questions & Answers

what is sasamoid bone?
hafeez Reply
how many types of bone on the base of shape
hafeez
5
Husna
i want join the conversation
juwar Reply
Alright
Haya
feel free to do so
Vida
where are you from ?
Haya
hi what's up
Mar
well hello
emad
Im from kashmir,but I'm studying in punjab
Aabid
Hello
Aabid
I'm studying pharmacy at JUST University in jordan
emad
so am i emad 😅
shereen
afg
Ayoub
I am Javed Ali
Javedali
hello i am hafeez from gilgit
hafeez
explain the mechanism(release and control) of hormonal interplay for fluid and electrolyte.
Cassie Reply
what are the main pumps found in the cell membrane
pauline Reply
calcium
Schmidt
sodium potassium pump
Husna
Differences between ligaments and catilage
joy Reply
differences between catilage and ligaments
joy
Both are different types of connective tissues. Second difference is that cartilage contains chondroblasts rather than fibroblasts. Their is also slight differences on their extracrullar matrix. For ex, cartilages tend to contain more collagen than tendons and ligaments.
Carmelo
Both types of connective tissue also function differently. Ligaments connect bone to bone, while cartilage have a variety of function like cushioning bones and giving structural support like on the nose and ears.
Carmelo
explain the causes of the refractory period of a nerve fiber
Sophia Reply
Refractory period immediately following stimulation during which a nerve or muscle is unresponsive to further stimulation. Brief pause in stimulus or excitation.
Nii
To add on, the brief pause is produced because of the event of establishing a resting membrane potential that needs to be produced before depolarization (another action potential) can occur again.
Carmelo
The refractory period also gives a chance for neurotransmitters to be replenished on the axon terminal.
Carmelo
what is hypoxia
Akas Reply
I guess it's low supply the oxygen to the tissues
famuyiwa
yup
Natalie
A condition in which tissues (especially the blood) are deprived of an adequate supply of oxygen
Panthera
hanifa pia uko hapa
Panthera
Hypoxia is the lack of oxygen concentration in the blood. Therefore, tissues will receive a low concentration of oxygen. Usually our bodies respond to Hypoxia by stimulating erythropoiesis in red bone marrow.
Carmelo
hypoxia is the lack of oxygen in blood absolutely.
hafeez
where is present Glenoid Cavity ?
A- Reply
what is the muscular tissue
Md Reply
muscular tissue is a type of tissue that provide to help in cotraction to aur body.
A-
What's the difference in epithelial, connective, muscular and muscle tissue
Gifty
and it's similarities
Gifty
what is limb bone
Akshu Reply
this are bone attaching or joining to the axial bone.axial bone including skull,vertebrate and ribcage
Eliasi
how many bones make up the skull?
Matthew
22 bones
Husna
22bones
Bhanu
where is present Glenoid cavity ?
A-
how many bone in skull
Md
almost there are 8 bones in skull
hafeez
Explain the stages of mitosis and cell division
Bella Reply
systems of human body
Udezue Reply
define lymphatic system And give the composition of lymphatic fluid
sakshi Reply
the network of vessels through which lymphatic drains From the tissue into blood.lymph contain variety of substance like salts, glucose, proteins and fatsand water, white blood cells
Bhanu
yeah
Hassan
what is lymphatic system
Adie Reply
the network of vessels through which lymph drains from tissue into the blood
Bhanu
to describe the boundaries of four cavity
Pius Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask