<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Differentiate among the different types of fractures
  • Describe the steps involved in bone repair

A fracture    is a broken bone. It will heal whether or not a physician resets it in its anatomical position. If the bone is not reset correctly, the healing process will keep the bone in its deformed position.

When a broken bone is manipulated and set into its natural position without surgery, the procedure is called a closed reduction    . Open reduction requires surgery to expose the fracture and reset the bone. While some fractures can be minor, others are quite severe and result in grave complications. For example, a fractured diaphysis of the femur has the potential to release fat globules into the bloodstream. These can become lodged in the capillary beds of the lungs, leading to respiratory distress and if not treated quickly, death.

Types of fractures

Fractures are classified by their complexity, location, and other features ( [link] ). [link] outlines common types of fractures. Some fractures may be described using more than one term because it may have the features of more than one type (e.g., an open transverse fracture).

Types of fractures

In this illustration, each type of fracture is shown on the right femur from an anterior view. In the closed fracture, the femur is broken in the middle of the shaft with the upper and lower halves of the bone completely separated. However, the two halves of the bones are still aligned in that the broken edges are still facing each other. In an open fracture, the femur is broken in the middle of the shaft with the upper and lower halves of the bone completely separated. Unlike the closed fracture, in the open fracture, the two bone halves are misaligned. The lower half is turned laterally and it has protruded through the skin of the thigh. The broken ends no longer line up with each other. In a transverse fracture, the bone has a crack entirely through its width, however, the broken ends are not separated. The crack is perpendicular to the long axis of the bone. Arrows indicate that this is usually caused by compression of the bone in a superior-inferior direction. A spiral fracture travels diagonally through the diameter of the bone. In a comminuted fracture, the bone has several connecting cracks at its middle. It is possible that the bone could splinter into several small pieces at the site of the comminuted fracture. In an impacted fracture, the crack zig zags throughout the width of the bone like a lightning bolt. An arrow indicates that these are usually caused by an impact that pushes the femur up into the body. A greenstick fracture is a small crack that does not extend through the entire width of the bone. The oblique fracture shown here is travelling diagonally through the shaft of the femur at about a thirty degree angle.
Compare healthy bone with different types of fractures: (a) closed fracture, (b) open fracture, (c) transverse fracture, (d) spiral fracture, (e) comminuted fracture, (f) impacted fracture, (g) greenstick fracture, and (h) oblique fracture.
Types of Fractures
Type of fracture Description
Transverse Occurs straight across the long axis of the bone
Oblique Occurs at an angle that is not 90 degrees
Spiral Bone segments are pulled apart as a result of a twisting motion
Comminuted Several breaks result in many small pieces between two large segments
Impacted One fragment is driven into the other, usually as a result of compression
Greenstick A partial fracture in which only one side of the bone is broken
Open (or compound) A fracture in which at least one end of the broken bone tears through the skin; carries a high risk of infection
Closed (or simple) A fracture in which the skin remains intact

Bone repair

When a bone breaks, blood flows from any vessel torn by the fracture. These vessels could be in the periosteum, osteons, and/or medullary cavity. The blood begins to clot, and about six to eight hours after the fracture, the clotting blood has formed a fracture hematoma    ( [link] a ). The disruption of blood flow to the bone results in the death of bone cells around the fracture.

Stages in fracture repair

This illustration shows a left to right progression of bone repair. The break is shown in the leftmost image, where the femur has an oblique, closed fracture in the middle of its shaft. The next image magnifies the break, showing that blood has filled the area between the broken bones. Blood has also filled in around the lateral and medial sides of the break. The influx of blood causes the broken area to swell, creating a hematoma. In the next image, the hematoma has been replaced with an external callus between the two broken ends. Within the internal callus, the blood vessels have reconnected and some spongy bone has regenerated in the gap between the two bone halves. In the next image, spongy bone has completely regenerated, connecting the two broken ends, referred to as the bony callus. The external callus still remains on the lateral and medial sides of the break, as the compact bone has not yet regenerated. In the final image, the compact bone has fully regenerated, encapsulating the bony callus and completely reconnecting the two bone halves. The bone has a slight bulge at the location of the healed fracture, which is clearly shown in the final image, which shows a zoomed out image of the completely healed femur.
The healing of a bone fracture follows a series of progressive steps: (a) A fracture hematoma forms. (b) Internal and external calli form. (c) Cartilage of the calli is replaced by trabecular bone. (d) Remodeling occurs.

Within about 48 hours after the fracture, chondrocytes from the endosteum have created an internal callus    (plural = calli) by secreting a fibrocartilaginous matrix between the two ends of the broken bone, while the periosteal chondrocytes and osteoblasts create an external callus    of hyaline cartilage and bone, respectively, around the outside of the break ( [link] b ). This stabilizes the fracture.

Over the next several weeks, osteoclasts resorb the dead bone; osteogenic cells become active, divide, and differentiate into osteoblasts. The cartilage in the calli is replaced by trabecular bone via endochondral ossification ( [link] c ).

Eventually, the internal and external calli unite, compact bone replaces spongy bone at the outer margins of the fracture, and healing is complete. A slight swelling may remain on the outer surface of the bone, but quite often, that region undergoes remodeling ( [link] d ), and no external evidence of the fracture remains.

Visit this website to review different types of fractures and then take a short self-assessment quiz.

Chapter review

Fractured bones may be repaired by closed reduction or open reduction. Fractures are classified by their complexity, location, and other features. Common types of fractures are transverse, oblique, spiral, comminuted, impacted, greenstick, open (or compound), and closed (or simple). Healing of fractures begins with the formation of a hematoma, followed by internal and external calli. Osteoclasts resorb dead bone, while osteoblasts create new bone that replaces the cartilage in the calli. The calli eventually unite, remodeling occurs, and healing is complete.

Questions & Answers

What is metatarsal
Ndotenyin Reply
bone of the foot is known as metatarsal
the term "mental" pertain to which of the following a. chin b.navel c. ear d. nose e. skull
cris Reply
what are the three many components of the lymphatic system?
Milica Reply
those are...... organ, tissue and blood capillary or vessals
anatomical terms and use them appropriatly in the language of anatomy of anterior body landmarks
Teody Reply
what is human anatomy?
rascal Reply
lts stady structured human body's
what is the study of how the body functions?
what is abdomipelvic cavity?
david Reply
where can we find the short bones
Chidi Reply
Carpal bones are examples of short bones
what is blood supply
on upper limb and lower limb
carpal bones
during pregnancy which would more increase size the mothers abdominal or pelvic cavity?
Nurmalyn Reply
pelvic cavity I think
What is anatomical position
define the main directional terms of the body
cris Reply
during physical exercise respiratory rate increace two student are discussing the mechanisms involved. student A claim they are positive feedback and student B claim negative feedback do you agree with student A or B and why
what is the physiology of circulation
please I mean the physiology of criculation
blood flow refers to the movement of blood through the vessels from arteries to the capillaries and then to the veins
during pregnancy, which would more size the mother's abdominal or pelvic cavity? explain
cris Reply
list and define the three plane of devision of the body
complete the following statements using correct directional terms for human being. 1. the navel is________to the nose 2. the heart is______to the breastbone(sternum) 3 the ankle is______to the knee 4 the ear is______to the eyes.
1. superior 2. posterior 3. superior 4. lateral
anterior fuerior
name the system of the body and its function
cris Reply
11 system are human body 1.integumentary system 2. skeletal system 3. muscular system 4. nervous system 5. endocrine system 6. cardiovascular system 7. lymphatic system 8. respiratory system 9. digestive system 10. urinary system 11. reproductive system male and female.
during pregnancy, which would more size the mother's abdominal or pelvic cavity? explain
how the body maintain hormeostasis in terms of bloodglucose level
cris Reply
It releases hormones from the pancreas insulin and glucagon
why human blood pressure high
amin Reply
fear, anxiety, sickness
why in mothers womb the foetus head is in anus direction?
As it seems the position downside n if we did such position thn soon we got vomiting then how foetus stay in downward position long time?
What is red blood cell
A type of blood cell that is made in the bone marrow and found in the blood. Red blood cells contain a protein called hemoglobin, which carries oxygen from the lungs to all parts of the body. Checking the number of red blood cells in the blood is usually part of a complete blood cell (CBC) test. It
red blood cell are the most numerous blood cells.they comprise about 99% of all blood cells red blood cells are non nucleated it has red colour due to present to hemoglobin.
Thanks for the answers
how will you promote quality of life in ptb patient using the 14 basic needs and 21 nursing problems?
rOx Reply

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?