<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how the body regulates temperature
  • Explain the significance of the metabolic rate

The body tightly regulates the body temperature through a process called thermoregulation    , in which the body can maintain its temperature within certain boundaries, even when the surrounding temperature is very different. The core temperature of the body remains steady at around 36.5–37.5 °C (or 97.7–99.5 °F). In the process of ATP production by cells throughout the body, approximately 60 percent of the energy produced is in the form of heat used to maintain body temperature. Thermoregulation is an example of negative feedback.

The hypothalamus in the brain is the master switch that works as a thermostat to regulate the body’s core temperature ( [link] ). If the temperature is too high, the hypothalamus can initiate several processes to lower it. These include increasing the circulation of the blood to the surface of the body to allow for the dissipation of heat through the skin and initiation of sweating to allow evaporation of water on the skin to cool its surface. Conversely, if the temperature falls below the set core temperature, the hypothalamus can initiate shivering to generate heat. The body uses more energy and generates more heat. In addition, thyroid hormone will stimulate more energy use and heat production by cells throughout the body. An environment is said to be thermoneutral    when the body does not expend or release energy to maintain its core temperature. For a naked human, this is an ambient air temperature of around 84 °F. If the temperature is higher, for example, when wearing clothes, the body compensates with cooling mechanisms. The body loses heat through the mechanisms of heat exchange.

Hypothalamus controls thermoregulation

This figure shows the pathways in which body temperature is controlled by the hypothalamus.
The hypothalamus controls thermoregulation.

Mechanisms of heat exchange

When the environment is not thermoneutral, the body uses four mechanisms of heat exchange to maintain homeostasis: conduction, convection, radiation, and evaporation. Each of these mechanisms relies on the property of heat to flow from a higher concentration to a lower concentration; therefore, each of the mechanisms of heat exchange varies in rate according to the temperature and conditions of the environment.

Conduction is the transfer of heat by two objects that are in direct contact with one another. It occurs when the skin comes in contact with a cold or warm object. For example, when holding a glass of ice water, the heat from your skin will warm the glass and in turn melt the ice. Alternatively, on a cold day, you might warm up by wrapping your cold hands around a hot mug of coffee. Only about 3 percent of the body’s heat is lost through conduction.

Convection is the transfer of heat to the air surrounding the skin. The warmed air rises away from the body and is replaced by cooler air that is subsequently heated. Convection can also occur in water. When the water temperature is lower than the body’s temperature, the body loses heat by warming the water closest to the skin, which moves away to be replaced by cooler water. The convection currents created by the temperature changes continue to draw heat away from the body more quickly than the body can replace it, resulting in hyperthermia. About 15 percent of the body’s heat is lost through convection.

Radiation is the transfer of heat via infrared waves. This occurs between any two objects when their temperatures differ. A radiator can warm a room via radiant heat. On a sunny day, the radiation from the sun warms the skin. The same principle works from the body to the environment. About 60 percent of the heat lost by the body is lost through radiation.

Evaporation is the transfer of heat by the evaporation of water. Because it takes a great deal of energy for a water molecule to change from a liquid to a gas, evaporating water (in the form of sweat) takes with it a great deal of energy from the skin. However, the rate at which evaporation occurs depends on relative humidity—more sweat evaporates in lower humidity environments. Sweating is the primary means of cooling the body during exercise, whereas at rest, about 20 percent of the heat lost by the body occurs through evaporation.

Metabolic rate

The metabolic rate    is the amount of energy consumed minus the amount of energy expended by the body. The basal metabolic rate (BMR)    describes the amount of daily energy expended by humans at rest, in a neutrally temperate environment, while in the postabsorptive state. It measures how much energy the body needs for normal, basic, daily activity. About 70 percent of all daily energy expenditure comes from the basic functions of the organs in the body. Another 20 percent comes from physical activity, and the remaining 10 percent is necessary for body thermoregulation or temperature control. This rate will be higher if a person is more active or has more lean body mass. As you age, the BMR generally decreases as the percentage of less lean muscle mass decreases.

Chapter review

Some of the energy from the food that is ingested is used to maintain the core temperature of the body. Most of the energy derived from the food is released as heat. The core temperature is kept around 36.5–37.5 °C (97.7–99.5 °F). This is tightly regulated by the hypothalamus in the brain, which senses changes in the core temperature and operates like a thermostat to increase sweating or shivering, or inducing other mechanisms to return the temperature to its normal range. The body can also gain or lose heat through mechanisms of heat exchange. Conduction transfers heat from one object to another through physical contact. Convection transfers heat to air or water. Radiation transfers heat via infrared radiation. Evaporation transfers heat as water changes state from a liquid to a gas.

Questions & Answers

name the 5 layers of skin
Monika Reply
stratum basale, stratum spinosum, stratum granulosum, stratum lucidum, stratum corneum
airiz
those are the layers of epidermis,, then we have the dermis which has got two layers that is papillary dermis and reticular dermis.. beneath the dermis we have the hypodermis( subcutaneous layer) which is not considered as a layer of skin
airiz
what's a feedback
ivhil Reply
is the information or comment about something that one have done
Gaston
may be you mean negative or positive feedback mechanism... in general, they mean body response its changes by hormones
Quran
what is endocrin?
Asim Reply
why should there be an inhibition to the process of gastric production in the intestinal phase
Gloria
endocrine is a system through which the secretions of cell directly poured into blood.
Tanveer
why should there be an inhibition to the process of gastric production in the intestinal
Gloria Reply
what is a stimuli
Emily Reply
environment factor that cause a cell to respond
Quran
name the two types of melanin
Laila Reply
deference between RNA and DNA
Ali
.DNA stands for Deoxyribonucleic Acid. The sugar portion of DNA is 2-Deoxyribose.RNA stands for Ribonucleic Acid.  The sugar portion of RNA is Ribose.2.The helix geometry of DNA is of B-Form (A or Z also present).The helix geometry of RNA is of A-Form.3.DNA is a double-stranded molecule consisting o
ryaisha
DNA consists of nucleotide but RNA consists of nucleoside DNA is double standard but RNA is single standard.In DNA at the nitrogen bases adinine,guanine,cytocin and thymine is present but in case of RNA instead of thymine uracil is present.
Tanveer
what are rdna
Budumari
what is a heart
walker Reply
A heart is an organ in the circulatory system that pumps blood throughout the systemic regions
bernard
what is anatomy
Aisha
Anatomy is the study of internal and external structures and the relationship among body parts. (the study of structure).
Tomi
what is the physiology of the heart
nadine
guys help me with a pathophysiology of asthma
Luyando
asthma is a lungs related disorder in which there is difficulty in breathing due to some allergic factors, their is inflamation of alveoli of respiratory part of lungs.also decreases the surface area.
Tanveer
what is meaning of brain strock and its types?
Tanveer
the pathophysiology of asthma is complex and involves airway inflammation and bronchial hyperresponsiveness pathogenesis of asthma
Omkar
skin infection please explain
Hamza Reply
what is malignant melanoma
Akon Reply
cancerous cells 🙄
Sohan
yes benign is non-cancerous malignant is cancerous.
Joseph
that's a simple way of explaining it however you're different processes like mitosis etc a person can be at risk for developing cancer etc
Joseph
you can tell by an unusual growth of a mole, or change in size coloration with melanoma. which is abnormal growth of your squamous cells.
Joseph
Types of wandering connective tissues
Hassan Reply
what are the meaning of skin
PASHALINA Reply
study of external structure of human body is known as anatomy
VINAY Reply
what is Tau?
Vicki Reply
what is sliva
Saqlain Reply
what is gross
Kiran Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask