<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how the body regulates temperature
  • Explain the significance of the metabolic rate

The body tightly regulates the body temperature through a process called thermoregulation    , in which the body can maintain its temperature within certain boundaries, even when the surrounding temperature is very different. The core temperature of the body remains steady at around 36.5–37.5 °C (or 97.7–99.5 °F). In the process of ATP production by cells throughout the body, approximately 60 percent of the energy produced is in the form of heat used to maintain body temperature. Thermoregulation is an example of negative feedback.

The hypothalamus in the brain is the master switch that works as a thermostat to regulate the body’s core temperature ( [link] ). If the temperature is too high, the hypothalamus can initiate several processes to lower it. These include increasing the circulation of the blood to the surface of the body to allow for the dissipation of heat through the skin and initiation of sweating to allow evaporation of water on the skin to cool its surface. Conversely, if the temperature falls below the set core temperature, the hypothalamus can initiate shivering to generate heat. The body uses more energy and generates more heat. In addition, thyroid hormone will stimulate more energy use and heat production by cells throughout the body. An environment is said to be thermoneutral    when the body does not expend or release energy to maintain its core temperature. For a naked human, this is an ambient air temperature of around 84 °F. If the temperature is higher, for example, when wearing clothes, the body compensates with cooling mechanisms. The body loses heat through the mechanisms of heat exchange.

Hypothalamus controls thermoregulation

This figure shows the pathways in which body temperature is controlled by the hypothalamus.
The hypothalamus controls thermoregulation.

Mechanisms of heat exchange

When the environment is not thermoneutral, the body uses four mechanisms of heat exchange to maintain homeostasis: conduction, convection, radiation, and evaporation. Each of these mechanisms relies on the property of heat to flow from a higher concentration to a lower concentration; therefore, each of the mechanisms of heat exchange varies in rate according to the temperature and conditions of the environment.

Conduction is the transfer of heat by two objects that are in direct contact with one another. It occurs when the skin comes in contact with a cold or warm object. For example, when holding a glass of ice water, the heat from your skin will warm the glass and in turn melt the ice. Alternatively, on a cold day, you might warm up by wrapping your cold hands around a hot mug of coffee. Only about 3 percent of the body’s heat is lost through conduction.

Convection is the transfer of heat to the air surrounding the skin. The warmed air rises away from the body and is replaced by cooler air that is subsequently heated. Convection can also occur in water. When the water temperature is lower than the body’s temperature, the body loses heat by warming the water closest to the skin, which moves away to be replaced by cooler water. The convection currents created by the temperature changes continue to draw heat away from the body more quickly than the body can replace it, resulting in hyperthermia. About 15 percent of the body’s heat is lost through convection.

Radiation is the transfer of heat via infrared waves. This occurs between any two objects when their temperatures differ. A radiator can warm a room via radiant heat. On a sunny day, the radiation from the sun warms the skin. The same principle works from the body to the environment. About 60 percent of the heat lost by the body is lost through radiation.

Evaporation is the transfer of heat by the evaporation of water. Because it takes a great deal of energy for a water molecule to change from a liquid to a gas, evaporating water (in the form of sweat) takes with it a great deal of energy from the skin. However, the rate at which evaporation occurs depends on relative humidity—more sweat evaporates in lower humidity environments. Sweating is the primary means of cooling the body during exercise, whereas at rest, about 20 percent of the heat lost by the body occurs through evaporation.

Metabolic rate

The metabolic rate    is the amount of energy consumed minus the amount of energy expended by the body. The basal metabolic rate (BMR)    describes the amount of daily energy expended by humans at rest, in a neutrally temperate environment, while in the postabsorptive state. It measures how much energy the body needs for normal, basic, daily activity. About 70 percent of all daily energy expenditure comes from the basic functions of the organs in the body. Another 20 percent comes from physical activity, and the remaining 10 percent is necessary for body thermoregulation or temperature control. This rate will be higher if a person is more active or has more lean body mass. As you age, the BMR generally decreases as the percentage of less lean muscle mass decreases.

Chapter review

Some of the energy from the food that is ingested is used to maintain the core temperature of the body. Most of the energy derived from the food is released as heat. The core temperature is kept around 36.5–37.5 °C (97.7–99.5 °F). This is tightly regulated by the hypothalamus in the brain, which senses changes in the core temperature and operates like a thermostat to increase sweating or shivering, or inducing other mechanisms to return the temperature to its normal range. The body can also gain or lose heat through mechanisms of heat exchange. Conduction transfers heat from one object to another through physical contact. Convection transfers heat to air or water. Radiation transfers heat via infrared radiation. Evaporation transfers heat as water changes state from a liquid to a gas.

Questions & Answers

Card 5 / 12: For whom would an appreciation of the structural characteristics of the human heart come more easily: an alien who lands on Earth, abducts a human, and dissects his heart, or an anatomy and physiology student performing a dissection of the heart on her very first day of class? Why?
Gelowe Reply
what are regular shaped cells with granules in the cytoplasam
Kabita Reply
PMNL
Dinu
I need sylubuss of clinical officers book
Omary Reply
cholesterol normal value is
BISWANATH Reply
less than 200mg/dl
Ashis
100 to159mg/dL
Dinu
Early this wk. I had some "A & P" questions & answers unfortunately didn't save them, Is there any way I can have them back ,so as 2 save them?. Thnx.
Kechi
what are the functions of the female reproductive system
Lister Reply
it produces the female egg necessary for reproduction, called the Ova or Oocytes. The system is designed to transport the Ova to the site of fertilization.
Kechi
Female reproductive system was mainly functioned to produce ova(ovum) (female eggs) Into which will be fertilized by male gamete to produce zygote
Omary
absolutely right
nimco
wa qalad nimco rage iska hubi
Khaliil
waxwalba ka fikirbay ubaahantahay
Ahmed
ha wayo jawabtoda wa qabyo nimco wey ku raacdat
Khaliil
ha wayo jawabtoda wa qabyo nimco wey ku raacday
Khaliil
wxayaabaha qaarkood waaa in aan u feejignaano
Ahmed
asc if I try female reproductive system has two function the first is to produce egg cell and the second is to protact and nourish the offspring until birth
Muriidi
what is stercobilinogen
Hancerich Reply
fecal urobilinogen. Created by bacteria in the gut. a chemical that gives feces brown color.
Blayne
next question pls.
Kechi
The rate of diffusion increases if the
stella
What's the answer?
Kechi
it's a breaking down of haemoglobin and it's a chemical made by bacteria
Dev
Thnx Dev Raj.
Kechi
yup so any more
Dev
yes I sure do need more "Questions" & "Answers". I'm learning whole lot. Thnx.
Kechi
what is the greatest muscle of the body
Lungu Reply
gluteus maximus
ABDULLAH
pls!!! more "A&P" questions & answers. Thnx.
Kechi
Gluteus maximus
THE
Describe anatomy of cardiovascular system?
cardiovascular system is a group of organs coming together to perform the circulation of blood. The organs invoked are the heart and the blood vessels with blood being the tissue. The heart is a pump and it pumps oxygenated blood through the systemic circuit and deoxygenated blood through the pulmon
bernard
pulmonary circuit.
bernard
more A&P questions pls. Thnx.
Kechi
If an ANOVA yields a significant F value, you could rely on ________ to test significant differences between group means.
Dane Reply
what's ANOVA
Cassandra
analysis of variance
Blayne
plz what you mean with "ANOVA" first
Fatima
anova means analysis of variance, a statistical method in which the variation in a set of observations is divided into distinct components.
Blayne
M value ot test
ABDULLAH
What does it mean by M value ot test?
Orpha
formation of red blood cells
Biketi Reply
explain why... lower back pain in ovarian cancer
Srijoni Reply
we says that protoplasm is the living part of us How?
Muzamil Reply
is the leaving part of our cellular structure.
Eric
it is the leaving part of our blood cellular structure also
ABDULLAH
what is receptor?
Preity Reply
an organ or cell able to respond to light, heat, or other external stimulus and transmit a signal to a sensory nerve.
Jessi
Has anyone taken the first exam?
Sandra
yes
yahye
yes
Allan
hey what is the process after your food is swallowed? how long does it take to get to the stomache until it is released as waste?
Fednise Reply
that is such a broad question. as you begin to swallow its various doses down the alimentary canal that brings the food into your stomach.then depending on whether it's a protein carbohydrate fat that dictates what function takes place in your stomach. these are all steps of digestion.
Joseph
typo sorry it's peristalsis , wave-like projections that push food down your alimentary canal etc. digestion starts in your mouth ends in your large intestines (colon anus)
Joseph
some of the many processes of digestion include hydrolysis dehydration synthesis denaturation of proteins etc. you have to be more specific.
Joseph
there's many different contributing factors the how long it takes food to convert into waste. remember fats, triglycerides proteins and carbohydrates all breakdown two different monomers and structures. you should be looking up metabolic processes.
Joseph
depending how much fiber you have in your diet dictates how much water is brought to your intestines that has to do with excretion whether fiber is insoluble or soluble. this is an anatomy and physiology app. to simply say the stomach will empty its contents in 2 to 3 hours would do you a disservice
Joseph
can the study of anatomy relate to medical technologies
Lean Reply
yes
Khh
absolutely
Jessi
yes...
Sherif
how can I understand micro biology and anatomy better.
Cassandra
yes
Kevin
someone to help me understand glycogeneogenesis
abel
what are the major branches of the aorta?
Kevin
look youtube video
Jessi

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask