<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the development of blood vessels
  • Describe the fetal circulation

In a developing embryo,the heart has developed enough by day 21 post-fertilization to begin beating. Circulation patterns are clearly established by the fourth week of embryonic life. It is critical to the survival of the developing human that the circulatory system forms early to supply the growing tissue with nutrients and gases, and to remove waste products. Blood cells and vessel production in structures outside the embryo proper called the yolk sac, chorion, and connecting stalk begin about 15 to 16 days following fertilization. Development of these circulatory elements within the embryo itself begins approximately 2 days later. You will learn more about the formation and function of these early structures when you study the chapter on development. During those first few weeks, blood vessels begin to form from the embryonic mesoderm. The precursor cells are known as hemangioblasts    . These in turn differentiate into angioblasts    , which give rise to the blood vessels and pluripotent stem cells, which differentiate into the formed elements of blood. (Seek additional content for more detail on fetal development and circulation.) Together, these cells form masses known as blood islands    scattered throughout the embryonic disc. Spaces appear on the blood islands that develop into vessel lumens. The endothelial lining of the vessels arise from the angioblasts within these islands. Surrounding mesenchymal cells give rise to the smooth muscle and connective tissue layers of the vessels. While the vessels are developing, the pluripotent stem cells begin to form the blood.

Vascular tubes also develop on the blood islands, and they eventually connect to one another as well as to the developing, tubular heart. Thus, the developmental pattern, rather than beginning from the formation of one central vessel and spreading outward, occurs in many regions simultaneously with vessels later joining together. This angiogenesis    —the creation of new blood vessels from existing ones—continues as needed throughout life as we grow and develop.

Blood vessel development often follows the same pattern as nerve development and travels to the same target tissues and organs. This occurs because the many factors directing growth of nerves also stimulate blood vessels to follow a similar pattern. Whether a given vessel develops into an artery or a vein is dependent upon local concentrations of signaling proteins.

As the embryo grows within the mother’s uterus, its requirements for nutrients and gas exchange also grow. The placenta—a circulatory organ unique to pregnancy—develops jointly from the embryo and uterine wall structures to fill this need. Emerging from the placenta is the umbilical vein    , which carries oxygen-rich blood from the mother to the fetal inferior vena cava via the ductus venosus to the heart that pumps it into fetal circulation. Two umbilical arteries    carry oxygen-depleted fetal blood, including wastes and carbon dioxide, to the placenta. Remnants of the umbilical arteries remain in the adult. (Seek additional content for more information on the role of the placenta in fetal circulation.)

There are three major shunts—alternate paths for blood flow—found in the circulatory system of the fetus. Two of these shunts divert blood from the pulmonary to the systemic circuit, whereas the third connects the umbilical vein to the inferior vena cava. The first two shunts are critical during fetal life, when the lungs are compressed, filled with amniotic fluid, and nonfunctional, and gas exchange is provided by the placenta. These shunts close shortly after birth, however, when the newborn begins to breathe. The third shunt persists a bit longer but becomes nonfunctional once the umbilical cord is severed. The three shunts are as follows ( [link] ):

  • The foramen ovale    is an opening in the interatrial septum that allows blood to flow from the right atrium to the left atrium. A valve associated with this opening prevents backflow of blood during the fetal period. As the newborn begins to breathe and blood pressure in the atria increases, this shunt closes. The fossa ovalis remains in the interatrial septum after birth, marking the location of the former foramen ovale.
  • The ductus arteriosus    is a short, muscular vessel that connects the pulmonary trunk to the aorta. Most of the blood pumped from the right ventricle into the pulmonary trunk is thereby diverted into the aorta. Only enough blood reaches the fetal lungs to maintain the developing lung tissue. When the newborn takes the first breath, pressure within the lungs drops dramatically, and both the lungs and the pulmonary vessels expand. As the amount of oxygen increases, the smooth muscles in the wall of the ductus arteriosus constrict, sealing off the passage. Eventually, the muscular and endothelial components of the ductus arteriosus degenerate, leaving only the connective tissue component of the ligamentum arteriosum.
  • The ductus venosus    is a temporary blood vessel that branches from the umbilical vein, allowing much of the freshly oxygenated blood from the placenta—the organ of gas exchange between the mother and fetus—to bypass the fetal liver and go directly to the fetal heart. The ductus venosus closes slowly during the first weeks of infancy and degenerates to become the ligamentum venosum.

Fetal shunts

This figure shows the blood vessels in a fetus.
The foramen ovale in the interatrial septum allows blood to flow from the right atrium to the left atrium. The ductus arteriosus is a temporary vessel, connecting the aorta to the pulmonary trunk. The ductus venosus links the umbilical vein to the inferior vena cava largely through the liver.

Chapter review

Blood vessels begin to form from the embryonic mesoderm. The precursor hemangioblasts differentiate into angioblasts, which give rise to the blood vessels and pluripotent stem cells that differentiate into the formed elements of the blood. Together, these cells form blood islands scattered throughout the embryo. Extensions known as vascular tubes eventually connect the vascular network. As the embryo grows within the mother’s womb, the placenta develops to supply blood rich in oxygen and nutrients via the umbilical vein and to remove wastes in oxygen-depleted blood via the umbilical arteries. Three major shunts found in the fetus are the foramen ovale and ductus arteriosus, which divert blood from the pulmonary to the systemic circuit, and the ductus venosus, which carries freshly oxygenated blood high in nutrients to the fetal heart.

Questions & Answers

why should there be an inhibition to the process of gastric production in the intestinal
Gloria Reply
what is a stimuli
Emily Reply
environment factor that cause a cell to respond
name the two types of melanin
Laila Reply
deference between RNA and DNA
.DNA stands for Deoxyribonucleic Acid. The sugar portion of DNA is 2-Deoxyribose.RNA stands for Ribonucleic Acid.  The sugar portion of RNA is Ribose.2.The helix geometry of DNA is of B-Form (A or Z also present).The helix geometry of RNA is of A-Form.3.DNA is a double-stranded molecule consisting o
DNA consists of nucleotide but RNA consists of nucleoside DNA is double standard but RNA is single standard.In DNA at the nitrogen bases adinine,guanine,cytocin and thymine is present but in case of RNA instead of thymine uracil is present.
what are rdna
what is a heart
walker Reply
A heart is an organ in the circulatory system that pumps blood throughout the systemic regions
what is anatomy
Anatomy is the study of internal and external structures and the relationship among body parts. (the study of structure).
what is the physiology of the heart
guys help me with a pathophysiology of asthma
asthma is a lungs related disorder in which there is difficulty in breathing due to some allergic factors, their is inflamation of alveoli of respiratory part of lungs.also decreases the surface area.
what is meaning of brain strock and its types?
the pathophysiology of asthma is complex and involves airway inflammation and bronchial hyperresponsiveness pathogenesis of asthma
skin infection please explain
Hamza Reply
what is malignant melanoma
Akon Reply
cancerous cells 🙄
yes benign is non-cancerous malignant is cancerous.
that's a simple way of explaining it however you're different processes like mitosis etc a person can be at risk for developing cancer etc
you can tell by an unusual growth of a mole, or change in size coloration with melanoma. which is abnormal growth of your squamous cells.
Types of wandering connective tissues
Hassan Reply
what are the meaning of skin
study of external structure of human body is known as anatomy
what is Tau?
Vicki Reply
what is sliva
Saqlain Reply
what is gross
Kiran Reply
Describe the characteristics of tissue lining the respiratory passage way
arach Reply
please are they two types of antigens? one is foreign material and the other is a protein.... Please enlighten me cos i don't get it
shakainah Reply
Anatomy which study's about the structure.
Umair Reply
external structure of body
spinal cord injury
spinal cord injury

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?