<< Chapter < Page Chapter >> Page >

Muscle shapes and fiber alignment

This figure shows the human body with the major muscle groups labeled.
The skeletal muscles of the body typically come in seven different general shapes.

Biceps brachii muscle contraction

This photo shows a person flexing her biceps.
The large mass at the center of a muscle is called the belly. Tendons emerge from both ends of the belly and connect the muscle to the bones, allowing the skeleton to move. The tendons of the bicep connect to the upper arm and the forearm. (credit: Victoria Garcia)

Circular muscles are also called sphincters (see [link] ). When they relax, the sphincters’ concentrically arranged bundles of muscle fibers increase the size of the opening, and when they contract, the size of the opening shrinks to the point of closure. The orbicularis oris muscle is a circular muscle that goes around the mouth. When it contracts, the oral opening becomes smaller, as when puckering the lips for whistling. Another example is the orbicularis oculi, one of which surrounds each eye. Consider, for example, the names of the two orbicularis muscles (orbicularis oris and oribicularis oculi), where part of the first name of both muscles is the same. The first part of orbicularis, orb (orb = “circular”), is a reference to a round or circular structure; it may also make one think of orbit, such as the moon’s path around the earth. The word oris (oris = “oral”) refers to the oral cavity, or the mouth. The word oculi (ocular = “eye”) refers to the eye.

There are other muscles throughout the body named by their shape or location. The deltoid is a large, triangular-shaped muscle that covers the shoulder. It is so-named because the Greek letter delta looks like a triangle. The rectus abdomis (rector = “straight”) is the straight muscle in the anterior wall of the abdomen, while the rectus femoris is the straight muscle in the anterior compartment of the thigh.

When a muscle has a widespread expansion over a sizable area, but then the fascicles come to a single, common attachment point, the muscle is called convergent    . The attachment point for a convergent muscle could be a tendon, an aponeurosis (a flat, broad tendon), or a raphe (a very slender tendon). The large muscle on the chest, the pectoralis major, is an example of a convergent muscle because it converges on the greater tubercle of the humerus via a tendon. The temporalis muscle of the cranium is another.

Pennate muscles (penna = “feathers”) blend into a tendon that runs through the central region of the muscle for its whole length, somewhat like the quill of a feather with the muscle arranged similar to the feathers. Due to this design, the muscle fibers in a pennate muscle can only pull at an angle, and as a result, contracting pennate muscles do not move their tendons very far. However, because a pennate muscle generally can hold more muscle fibers within it, it can produce relatively more tension for its size. There are three subtypes of pennate muscles.

In a unipennate    muscle, the fascicles are located on one side of the tendon. The extensor digitorum of the forearm is an example of a unipennate muscle. A bipennate    muscle has fascicles on both sides of the tendon. In some pennate muscles, the muscle fibers wrap around the tendon, sometimes forming individual fascicles in the process. This arrangement is referred to as multipennate    . A common example is the deltoid muscle of the shoulder, which covers the shoulder but has a single tendon that inserts on the deltoid tuberosity of the humerus.

Because of fascicles, a portion of a multipennate muscle like the deltoid can be stimulated by the nervous system to change the direction of the pull. For example, when the deltoid muscle contracts, the arm abducts (moves away from midline in the sagittal plane), but when only the anterior fascicle is stimulated, the arm will abduct    and flex (move anteriorly at the shoulder joint).

The lever system of muscle and bone interactions

Skeletal muscles do not work by themselves. Muscles are arranged in pairs based on their functions. For muscles attached to the bones of the skeleton, the connection determines the force, speed, and range of movement. These characteristics depend on each other and can explain the general organization of the muscular and skeletal systems.

The skeleton and muscles act together to move the body. Have you ever used the back of a hammer to remove a nail from wood? The handle acts as a lever and the head of the hammer acts as a fulcrum, the fixed point that the force is applied to when you pull back or push down on the handle. The effort applied to this system is the pulling or pushing on the handle to remove the nail, which is the load, or “resistance” to the movement of the handle in the system. Our musculoskeletal system works in a similar manner, with bones being stiff levers and the articular endings of the bones—encased in synovial joints—acting as fulcrums. The load would be an object being lifted or any resistance to a movement (your head is a load when you are lifting it), and the effort, or applied force, comes from contracting skeletal muscle.

Chapter review

Skeletal muscles each have an origin and an insertion. The end of the muscle that attaches to the bone being pulled is called the muscle’s insertion and the end of the muscle attached to a fixed, or stabilized, bone is called the origin. The muscle primarily responsible for a movement is called the prime mover, and muscles that assist in this action are called synergists. A synergist that makes the insertion site more stable is called a fixator. Meanwhile, a muscle with the opposite action of the prime mover is called an antagonist. Several factors contribute to the force generated by a skeletal muscle. One is the arrangement of the fascicles in the skeletal muscle. Fascicles can be parallel, circular, convergent, pennate, fusiform, or triangular. Each arrangement has its own range of motion and ability to do work.

Questions & Answers

tissue,organ, system, cell
Amadi Reply
list carpal bones from proximal to distal
Meshack Reply
scaphoid, lunate, triquetrum, pisiform, trepizium, trepizoid, capitate, hamate
Bhuvana
You are right
David
gr8 bro
Daniel
anyone explain lungs valium?
Sajid
when did the roman rule Britain
Rita Reply
what is function of the male respiratory system ?
poonam Reply
need to join this conversation
Collins
what does increased glomerular filtration results from
Nancy Reply
what is the difference between cardiovascular and respiratory system
Bokenana Reply
cardiovascular deals with blood,blood vessels and heart while respiratory system deal with gas exchange
Erick
send me your app line
Erick
just make a class group and have online classes take turns in teaching
maz
send yo app lines so I make a group
Erick
ok
Erick
you're simply saying no to teaching one another
maz
what's an epithelial tissue
Romantic Reply
epithelial tissue are thin tissues that covers all the exposed surfaces of the body
Ireen
is anyone from high school?
Sahil
yes
Sulaiman
Final year
Royleen
med student
brian
South Africa
brian
final year too
brian
INDIA
Sahil
describe the structure of the human body in terms of six levels of organisation
Chulufya Reply
list the muscles of abdomen and their functions
HANNAH Reply
list the neck muscles and their functions
HANNAH
list the thy muscles and their functions
HANNAH
four muscles in facial expression
nah
describe flow of blood
osoma Reply
are arteries do pumping action to get are blood flow
isaiah
causes of occasional female muscle weakness and body pain
sammy
hey Venus ulcers description
patrick
what is conduction in the heart occur
Daud Reply
what is anatomy
Prin Reply
anatomy is the study of human body.?
Sittie
anatomy is the study of scientific human body's structure.
Sittie
Anatomy is the study of the structure of the human body and the physical relationship between its constituent parts.
Maina
Anatomy is the study of the structures of body parts
Nepi
what are the principles of public health nursing?
tribel
Anatomy is the scientific study of human body parts .
Shakinah
Anatomy is the study of structure and relationship of the body structure
Stephen
Anatomy is the study of the structure and movement of the human body
renukha
energy generation molecular transport reproduction.
Sarah
Anatomy is the study of budy structures and their relationship.
Denis
Anatomy is the scientific study of human structure
jacinta
Anatomy ie the study of the human body and its functions.
Samuel
anatomy is the study of human body
Nadiiro
is the study of the structure of the body
Nqobile
I thank you guys for your studying.
Gibson
what is the biological meaning of come?
Gibson
is haemoglobin considered as body fluid?
Bonnie Reply
yes
Musi
yes
Given
No
Stephen
Given plz support yo answer
Bonnie
no
Stephen
it's a pigment found on blood
Stephen
Haemoglobin is a protein found in RBCs. Seeing as it is a protein (solid) it isn't a fluid.
jason
circulation of blood through the left side of the heart
Dorothy Reply
explain features of epithelial tissue
Ghati Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask