This page is optimized for mobile devices, if you would prefer the desktop version just click here

1.1 The scope and scale of physics  (Page 5/12)

  • How many hydrogen atoms does it take to stretch across the diameter of the Sun?
    (Answer: 10 9 m/10 –10 m = 10 19 hydrogen atoms)
  • How many protons are there in a bacterium?
    (Answer: 10 –15 kg/10 –27 kg = 10 12 protons)
  • How many floating-point operations can a supercomputer do in 1 day?
    (Answer: 10 5 s/10 –17 s = 10 22 floating-point operations)

In studying [link] , take some time to come up with similar questions that interest you and then try answering them. Doing this can breathe some life into almost any table of numbers.

This table shows the orders of magnitude of length, mass, and time.

Visit this site to explore interactively the vast range of length scales in our universe. Scroll down and up the scale to view hundreds of organisms and objects, and click on the individual objects to learn more about each one.

Building models

How did we come to know the laws governing natural phenomena? What we refer to as the laws of nature are concise descriptions of the universe around us. They are human statements of the underlying laws or rules that all natural processes follow. Such laws are intrinsic to the universe; humans did not create them and cannot change them. We can only discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle, triumph, and disappointment inherent in any creative effort ( [link] ). The cornerstone of discovering natural laws is observation; scientists must describe the universe as it is, not as we imagine it to be.

(a) Enrico Fermi (1901–1954) was born in Italy. On accepting the Nobel Prize in Stockholm in 1938 for his work on artificial radioactivity produced by neutrons, he took his family to America rather than return home to the government in power at the time. He became an American citizen and was a leading participant in the Manhattan Project. (b) Marie Curie (1867–1934) sacrificed monetary assets to help finance her early research and damaged her physical well-being with radiation exposure. She is the only person to win Nobel prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit a: United States Department of Energy)

A model    is a representation of something that is often too difficult (or impossible) to display directly. Although a model is justified by experimental tests, it is only accurate in describing certain aspects of a physical system. An example is the Bohr model of single-electron atoms, in which the electron is pictured as orbiting the nucleus, analogous to the way planets orbit the Sun ( [link] ). We cannot observe electron orbits directly, but the mental image helps explain some of the observations we can make, such as the emission of light from hot gases (atomic spectra). However, other observations show that the picture in the Bohr model is not really what atoms look like. The model is “wrong,” but is still useful for some purposes. Physicists use models for a variety of purposes. For example, models can help physicists analyze a scenario and perform a calculation or models can be used to represent a situation in the form of a computer simulation. Ultimately, however, the results of these calculations and simulations need to be double-checked by other means—namely, observation and experimentation.

<< Chapter < Page Page > Chapter >>
Terms 5

Read also:

OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.