This page is optimized for mobile devices, if you would prefer the desktop version just click here

1.3 Rocket flight simulation  (Page 2/2)

------------------------------------------------------------------------------------------------------------------------------------------------------------

state_vecs = zeros(3,length(t)); % Initialize matrix for position, % velocity and acceleration statestrans_mat = [1 dt (1/2)*(dt^2); 0 1 dt; 0 0 1]; % Initialize state% derivation matrix prv_states = zeros(3,length(t)); % Matrix for previous statesprv_states(3,:) = Acc_t; % Set acceleration vector in previous states for i=1:length(t)-1state_vecs(1,i) = trans_mat(1,:)*prv_states(:,i); % Derive position state_vecs(2,i) = trans_mat(2,:)*prv_states(:,i); % Derive velocitystate_vecs(3,i) = trans_mat(3,:)*prv_states(:,i); % Derive acceleration prv_states(1,i+1) = state_vecs(1,i); % Use current states to derive% future values prv_states(2,i+1) = state_vecs(2,i);end s_comp = state_vecs(1,:); % Position vectorv_comp = state_vecs(2,:); % Velocity vector a_comp = state_vecs(3,:); % Acceleration vectorfigure; plot(t,s_comp) % Show plot of computed positiontitle('Computed Position') figure;plot(t,v_comp) % Show plot of computed velocity title('Computed Velocity')figure; plot(t,a_comp) % Show plot of computed accelerationtitle('Computed Acceleration') [apogee,t_index]= max(s_comp); % Determine and display actual apogee disp('Actual Apogee occurs at t =')disp(t(t_index))

------------------------------------------------------------------------------------------------------------------------------------------------------------

Using the var() command in MATLAB, we determined that the measured data from the rocket launch got corrupted with Gaussian noise with mean=0 and different variances for position, velocity, and acceleration.

State Variance
Position 5.985
Velocity 2
Acceleration 0.0346

In addition, we introduced A/D quantization from our sensors into the position, velocity, and acceleration states. Specifically, the sensors introduced a time quantization of 50ms and an amplitude quantization in increments of three (see [link] , [link] [link] ):

------------------------------------------------------------------------------------------------------------------------------------------------------------

% Measurement noise % Position corrupted with Gaussian noise with standard deviation = 5.985s_n = state_vecs(1,:)+(5.985.*randn(1,length(t))); % Velocity corrupted with Gaussian noise with standard deviation = 2v_n = state_vecs(2,:)+(2.*randn(1,length(t))); % Position corrupted with Gaussian noise with standard deviation = 0.0346a_n = state_vecs(3,:)+(0.0346.*randn(1,length(t))); figure;plot(t,s_n) % Plot noisy position title('Noisy Position')figure; plot(t,v_n) % Plot noisy velocitytitle('Noisy Velocity') figure;plot(t,a_n) % Plot noisy acceleration title('Noisy Acceleration')%Quantization %Time Quantized to 0.05 seconds%Amplitude quantization is 3 meters t_q = t(1:50:end);s_n_q = floor(s_n(1,1:50:end)./3).*3; v_n_q = floor(v_n(1,1:50:end)./3).*3;a_n_q = floor(a_n(1,1:50:end)./3).*3; figure;plot(t_q,s_n_q) % Plot noisy and quantized position title('Noisy and Quantized Position')figure; plot(t_q,v_n_q) % Plot noisy and quantized velocitytitle('Noisy and Quantized Velocity') figure;plot(t_q,a_n_q) % Plot noisy and quantized acceleration title('Noisy and Quantized Acceleration')

------------------------------------------------------------------------------------------------------------------------------------------------------------

Conclusion

Once corrupted with noise and quantized, the simulation provides an accurate approximation of our measured data, and allows for multiple simulated, random, and parameterized rocket tests (see [link] ):

<< Chapter < Page Page > Chapter >>

Read also:

OpenStax, Elec 301 projects fall 2013. OpenStax CNX. Sep 14, 2014 Download for free at http://legacy.cnx.org/content/col11709/1.1
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.