<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Square a binomial using the Binomial Squares Pattern
  • Multiply conjugates using the Product of Conjugates Pattern
  • Recognize and use the appropriate special product pattern

Before you get started, take this readiness quiz.

  1. Simplify: 9 2 ( −9 ) 2 9 2 .
    If you missed this problem, review [link] .

Square a binomial using the binomial squares pattern

Mathematicians like to look for patterns that will make their work easier. A good example of this is squaring binomials. While you can always get the product by writing the binomial    twice and using the methods of the last section, there is less work to do if you learn to use a pattern.

Let’s start by looking at ( x + 9 ) 2 . What does this mean? ( x + 9 ) 2 It means to multiply ( x + 9 ) by itself. ( x + 9 ) ( x + 9 ) Then, using FOIL, we get: x 2 + 9 x + 9 x + 81 Combining like terms gives: x 2 + 18 x + 81 Here’s another one: ( y 7 ) 2 Multiply ( y 7 ) by itself. ( y 7 ) ( y 7 ) Using FOIL, we get: y 2 7 y 7 y + 49 And combining like terms: y 2 14 y + 49 And one more: ( 2 x + 3 ) 2 Multiply. ( 2 x + 3 ) ( 2 x + 3 ) Use FOIL: 4 x 2 + 6 x + 6 x + 9 Combine like terms. 4 x 2 + 12 x + 9

Look at these results. Do you see any patterns?

What about the number of terms? In each example we squared a binomial and the result was a trinomial    .

( a + b ) 2 = ____ + ____ + ____

Now look at the first term in each result. Where did it come from?

This figure has three columns. The first column contains the expression x plus 9, in parentheses, squared. Below this is the product of x plus 9 and x plus 9. Below this is x squared plus 9x plus 9x plus 81. Below this is x squared plus 18x plus 81. The second column contains the expression y minus 7, in parentheses, squared. Below this is the product of y minus 7 and y minus 7. Below this is y squared minus 7y minus 7y plus 49. Below this is the expression y squared minus 14y plus 49. The third column contains the expression 2x plus 3, in parentheses, squared. Below this is the product of 2x plus 3 and 2x plus 3. Below this is 4x squared plus 6x plus 6x plus 9. Below this is 4x squared plus 12x plus 9.

The first term is the product of the first terms of each binomial. Since the binomials are identical, it is just the square of the first term!

( a + b ) 2 = a 2 + ____ + ____

To get the first term of the product, square the first term .

Where did the last term come from? Look at the examples and find the pattern.

The last term is the product of the last terms, which is the square of the last term.

( a + b ) 2 = ____ + ____ + b 2

To get the last term of the product, square the last term .

Finally, look at the middle term . Notice it came from adding the “outer” and the “inner” terms—which are both the same! So the middle term is double the product of the two terms of the binomial.

( a + b ) 2 = ____ + 2 a b + ____ ( a b ) 2 = ____ 2 a b + ____

To get the middle term of the product, multiply the terms and double their product .

Putting it all together:

Binomial squares pattern

If a and b are real numbers,

( a + b ) 2 = a 2 + 2 a b + b 2 ( a b ) 2 = a 2 2 a b + b 2
No Alt Text

To square a binomial:

  • square the first term
  • square the last term
  • double their product

A number example helps verify the pattern.

( 10 + 4 ) 2 Square the first term. 10 2 + ___ + ___ Square the last term. 10 2 + ___ + 4 2 Double their product. 10 2 + 2 · 10 · 4 + 4 2 Simplify. 100 + 80 + 16 Simplify. 196

To multiply ( 10 + 4 ) 2 usually you’d follow the Order of Operations.

( 10 + 4 ) 2 ( 14 ) 2 196

The pattern works!

Multiply: ( x + 5 ) 2 .

Solution

x plus 5, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Square the first term. x squared plus blank plus blank. Above the expression is the general form a squared plus 2 a b plus b squared.
Square the last term. x squared plus blank plus 5 squared.
Double the product. x squared plus 2 times x times 5 plus 5 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. x squared plus 10 x plus 25.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( x + 9 ) 2 .

x 2 + 18 x + 81

Got questions? Get instant answers now!

Multiply: ( y + 11 ) 2 .

y 2 + 22 y + 121

Got questions? Get instant answers now!

Multiply: ( y 3 ) 2 .

Solution

y minus 3, in parentheses, squared. Above the expression is the general formula a minus b, in parentheses, squared.
Square the first term. y squared minus blank plus blank. Above the expression is the general form a squared plus 2 a b plus b squared.
Square the last term. y squared minus blank plus 3 squared.
Double the product. y squared minus y times y times 3 plus 3 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. y squared minus 6 y plus 9.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( x 9 ) 2 .

x 2 18 x + 81

Got questions? Get instant answers now!

Multiply: ( p 13 ) 2 .

p 2 26 p + 169

Got questions? Get instant answers now!

Multiply: ( 4 x + 6 ) 2 .

Solution

4 x plus 6, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Use the pattern. 4 x squared plus 2 times 4 x times 6 plus 6 squared. Above this expression is the general formula a squared plus 2 times a times b plus b squared.
Simplify. 16 x squared plus 48 x plus 36.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( 6 x + 3 ) 2 .

36 x 2 + 36 x + 9

Got questions? Get instant answers now!

Multiply: ( 4 x + 9 ) 2 .

16 x 2 + 72 x + 81

Got questions? Get instant answers now!

Multiply: ( 2 x 3 y ) 2 .

Solution

contains 2 x minus 3 y, in parentheses, squared. Above the expression is the general formula a plus b, in parentheses, squared.
Use the pattern. 2 x squared minus 2 times 2 x times 3 y plus 3 y squared. Above this expression is the general formula a squared minus 2 times a times b plus b squared.
Simplify. 4 x squared minus 12 x y plus 9 y squared.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Multiply: ( 2 c d ) 2 .

4 c 2 4 c d + d 2

Got questions? Get instant answers now!

Multiply: ( 4 x 5 y ) 2 .

16 x 2 40 x y + 25 y 2

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask