



Key equations
quadratic formula 
$x=\frac{b\pm \sqrt{{b}^{2}4ac}}{2a}$ 
Key concepts
 Many quadratic equations can be solved by factoring when the equation has a leading coefficient of 1 or if the equation is a difference of squares. The zerofactor property is then used to find solutions. See
[link] ,
[link] , and
[link] .
 Many quadratic equations with a leading coefficient other than 1 can be solved by factoring using the grouping method. See
[link] and
[link] .
 Another method for solving quadratics is the square root property. The variable is squared. We isolate the squared term and take the square root of both sides of the equation. The solution will yield a positive and negative solution. See
[link] and
[link] .
 Completing the square is a method of solving quadratic equations when the equation cannot be factored. See
[link]
.
 A highly dependable method for solving quadratic equations is the quadratic formula, based on the coefficients and the constant term in the equation. See
[link] .
 The discriminant is used to indicate the nature of the roots that the quadratic equation will yield: real or complex, rational or irrational, and how many of each. See
[link]
.
 The Pythagorean Theorem, among the most famous theorems in history, is used to solve righttriangle problems and has applications in numerous fields. Solving for the length of one side of a right triangle requires solving a quadratic equation. See
[link]
.
Section exercises
Verbal
When we solve a quadratic equation, how many solutions should we always start out seeking? Explain why when solving a quadratic equation in the form
$\text{\hspace{0.17em}}a{x}^{2}+bx+c=0\text{\hspace{0.17em}}$ we may graph the equation
$\text{\hspace{0.17em}}y=a{x}^{2}+bx+c\text{\hspace{0.17em}}$ and have no zeroes (
x intercepts).
Got questions? Get instant answers now!
When we solve a quadratic equation by factoring, why do we move all terms to one side, having zero on the other side?
We want to take advantage of the zero property of multiplication in the fact that if
$\text{\hspace{0.17em}}a\cdot b=0\text{\hspace{0.17em}}$ then it must follow that each factor separately offers a solution to the product being zero:
$\text{\hspace{0.17em}}a=0\text{}or\text{b}=0.$
Got questions? Get instant answers now!
In the quadratic formula, what is the name of the expression under the radical sign
$\text{\hspace{0.17em}}{b}^{2}4ac,$ and how does it determine the number of and nature of our solutions?
Got questions? Get instant answers now!
Describe two scenarios where using the square root property to solve a quadratic equation would be the most efficient method.
One, when no linear term is present (no
x term), such as
$\text{\hspace{0.17em}}{x}^{2}=16.\text{\hspace{0.17em}}$ Two, when the equation is already in the form
$\text{\hspace{0.17em}}{(ax+b)}^{2}=d.$
Got questions? Get instant answers now!
Algebraic
For the following exercises, solve the quadratic equation by factoring.
For the following exercises, solve the quadratic equation by using the square root property.
For the following exercises, solve the quadratic equation by completing the square. Show each step.
Questions & Answers
x2y+3z=3
2xy+z=7
x+3yz=6
Need help solving this problem (2/7)^2
what is the coefficient of 4×
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to 1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
lim x to infinity e^1e^1/log(1+x)
given eccentricity and a point find the equiation
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
If f(x) = x2
then, f(3) when 5f(x+1)
5((32)+1)
5(1+1)
5(2)
10
Augustine
how do they get the third part x = (32)5/4
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
AJ
can someone help me with some logarithmic and exponential equations.
sure. what is your question?
ninjadapaul
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X6)^2
so it's 20 divided by X6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
is it a question of log
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
Source:
OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.