<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Simplify expressions with higher roots
  • Use the Product Property to simplify expressions with higher roots
  • Use the Quotient Property to simplify expressions with higher roots
  • Add and subtract higher roots

Before you get started, take this readiness quiz.

  1. Simplify: y 5 y 4 .
    If you missed this problem, review [link] .
  2. Simplify: ( n 2 ) 6 .
    If you missed this problem, review [link] .
  3. Simplify: x 8 x 3 .
    If you missed this problem, review [link] .

Simplify expressions with higher roots

Up to now, in this chapter we have worked with squares and square roots. We will now extend our work to include higher powers and higher roots.

Let’s review some vocabulary first.

We write: We say: n 2 n squared n 3 n cubed n 4 n to the fourth n 5 n to the fifth

The terms ‘squared’ and ‘cubed’ come from the formulas for area of a square and volume of a cube.

It will be helpful to have a table of the powers of the integers from −5 to 5 . See [link] .

This figure consists of two tables. The first table shows the results of raising the numbers 1, 2, 3, 4, 5, x, and x squared to the second, third, fourth, and fifth powers. The second table shows the results of raising the numbers negative one through negative five to the second, third, fourth, and fifth powers. The table first has five columns and nine rows. The second has five columns and seven rows. The columns in both tables are labeled, “Number,” “Square,” “Cube,” “Fourth power,” “Fifth power,” nothing,  “Number,” “Square,” “Cube,” “Fourth power,” and “Fifth power.” In both tables, the next row reads: n, n squared, n cubed, n to the fourth power, n to the fifth power, nothing, n, n squared, n cubed, n to the fourth power, and n to the fifth power. In the first table, 1 squared, 1 cubed, 1 to the fourth power, and 1 to the fifth power are all shown to be 1. In the next row, 2 squared is 4, 2 cubed is 8, 2 to the fourth power is 16, and 2 to the fifth power is 32. In the next row, 3 squared is 9, 3 cubed is 27, 3 to the fourth power is 81, and 3 to the fifth power is 243. In the next row, 4 squared is 16, 4 cubed is 64, 4 to the fourth power is 246, and 4 to the fifth power is 1024. In the next row, 5 squared is 25, 5 cubed is 125, 5 to the fourth power is 625, and 5 to the fifth power is 3125. In the next row, x squared, x cubed, x to the fourth power, and x to the fifth power are listed. In the next row, x squared squared is x to the fourth power, x cubed squared is x to the fifth power, x squared to the fourth power is x to the eighth power, and x squared to the fifth power is x to the tenth power. In the second table, negative 1 squared is 1, negative 1 cubed is negative 1, negative 1 to the fourth power is 1, and negative 1 to the fifth power is negative 1. In the next row, negative 2 squared is 4, negative 2 cubed is negative 8, negative 2 to the fourth power is 16, and negative 2 to the fifth power is negative 32. In the next row, negative 4 squared is 16, negative 4 cubed is negative 64, negative 4 to the fourth power is 256, and negative 4 to the fifth power is negative 1024. In the next row, negative 5 squared is 25, negative 5 cubed is negative 125, negative 5 to the fourth power is 625, and negative 5 to the fifth power is negative 3125.
First through fifth powers of integers from −5 to 5 .

Notice the signs in [link] . All powers of positive numbers are positive, of course. But when we have a negative number, the even powers are positive and the odd powers are negative. We’ll copy the row with the powers of −2 below to help you see this.

This figure has five columns and two rows. The first row labels each column: n, n squared, n cubed, n to the fourth power, and n to the fifth power. The second row reads: negative 2, 4, negative 8, 16, and negative 32.

Earlier in this chapter we defined the square root of a number.

If n 2 = m , then n is a square root of m .

And we have used the notation m to denote the principal square root . So m 0 always.

We will now extend the definition to higher roots.

n Th root of a number

If b n = a , then b is an n th root of a number     a .

The principal n th root of a is written a n .

         n is called the index    of the radical.

We do not write the index for a square root. Just like we use the word ‘cubed’ for b 3 , we use the term ‘cube root’ for a 3 .

We refer to [link] to help us find higher roots.

4 3 = 64 64 3 = 4 3 4 = 81 81 4 = 3 ( −2 ) 5 = −32 −32 5 = −2

Could we have an even root of a negative number? No. We know that the square root of a negative number is not a real number. The same is true for any even root. Even roots of negative numbers are not real numbers. Odd roots of negative numbers are real numbers.

Properties of a n

When n is an even number and

  • a 0 , then a n is a real number
  • a < 0 , then a n is not a real number

When n is an odd number, a n is a real number for all values of a .

Simplify: 8 3 81 4 32 5 .

Solution


8 3 Since ( 2 ) 3 = 8 . 2


81 4 Since ( 3 ) 4 = 81 . 3


32 5 Since ( 2 ) 5 = 32 . 2

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Simplify: 27 3 256 4 243 5 .

3 4 3

Got questions? Get instant answers now!

Simplify: 1000 3 16 4 32 5 .

10 2 2

Got questions? Get instant answers now!

Simplify: −64 3 −16 4 −243 5 .

Solution


  1. −64 3 Since ( −4 ) 3 = −64 . −4


  2. −16 4 Think, ( ? ) 4 = −16 . No real number raised to the fourth power is positive. Not a real number.


  3. −243 5 Since ( −3 ) 5 = −243 . −3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Simplify: −125 3 −16 4 −32 5 .

−5 not real −2

Got questions? Get instant answers now!

Simplify: −216 3 −81 4 −1024 5 .

−6 not real −4

Got questions? Get instant answers now!

When we worked with square roots that had variables in the radicand, we restricted the variables to non-negative values. Now we will remove this restriction.

The odd root of a number can be either positive or negative. We have seen that −64 3 = −4 .

But the even root of a non-negative number is always non-negative, because we take the principal n th root    .

Suppose we start with a = −5 .

( −5 ) 4 = 625 625 4 = 5

How can we make sure the fourth root of −5 raised to the fourth power, ( −5 ) 4 is 5? We will see in the following property.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask