<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Simplify expressions with higher roots
  • Use the Product Property to simplify expressions with higher roots
  • Use the Quotient Property to simplify expressions with higher roots
  • Add and subtract higher roots

Before you get started, take this readiness quiz.

  1. Simplify: y 5 y 4 .
    If you missed this problem, review [link] .
  2. Simplify: ( n 2 ) 6 .
    If you missed this problem, review [link] .
  3. Simplify: x 8 x 3 .
    If you missed this problem, review [link] .

Simplify expressions with higher roots

Up to now, in this chapter we have worked with squares and square roots. We will now extend our work to include higher powers and higher roots.

Let’s review some vocabulary first.

We write: We say: n 2 n squared n 3 n cubed n 4 n to the fourth n 5 n to the fifth

The terms ‘squared’ and ‘cubed’ come from the formulas for area of a square and volume of a cube.

It will be helpful to have a table of the powers of the integers from −5 to 5 . See [link] .

This figure consists of two tables. The first table shows the results of raising the numbers 1, 2, 3, 4, 5, x, and x squared to the second, third, fourth, and fifth powers. The second table shows the results of raising the numbers negative one through negative five to the second, third, fourth, and fifth powers. The table first has five columns and nine rows. The second has five columns and seven rows. The columns in both tables are labeled, “Number,” “Square,” “Cube,” “Fourth power,” “Fifth power,” nothing,  “Number,” “Square,” “Cube,” “Fourth power,” and “Fifth power.” In both tables, the next row reads: n, n squared, n cubed, n to the fourth power, n to the fifth power, nothing, n, n squared, n cubed, n to the fourth power, and n to the fifth power. In the first table, 1 squared, 1 cubed, 1 to the fourth power, and 1 to the fifth power are all shown to be 1. In the next row, 2 squared is 4, 2 cubed is 8, 2 to the fourth power is 16, and 2 to the fifth power is 32. In the next row, 3 squared is 9, 3 cubed is 27, 3 to the fourth power is 81, and 3 to the fifth power is 243. In the next row, 4 squared is 16, 4 cubed is 64, 4 to the fourth power is 246, and 4 to the fifth power is 1024. In the next row, 5 squared is 25, 5 cubed is 125, 5 to the fourth power is 625, and 5 to the fifth power is 3125. In the next row, x squared, x cubed, x to the fourth power, and x to the fifth power are listed. In the next row, x squared squared is x to the fourth power, x cubed squared is x to the fifth power, x squared to the fourth power is x to the eighth power, and x squared to the fifth power is x to the tenth power. In the second table, negative 1 squared is 1, negative 1 cubed is negative 1, negative 1 to the fourth power is 1, and negative 1 to the fifth power is negative 1. In the next row, negative 2 squared is 4, negative 2 cubed is negative 8, negative 2 to the fourth power is 16, and negative 2 to the fifth power is negative 32. In the next row, negative 4 squared is 16, negative 4 cubed is negative 64, negative 4 to the fourth power is 256, and negative 4 to the fifth power is negative 1024. In the next row, negative 5 squared is 25, negative 5 cubed is negative 125, negative 5 to the fourth power is 625, and negative 5 to the fifth power is negative 3125.
First through fifth powers of integers from −5 to 5 .

Notice the signs in [link] . All powers of positive numbers are positive, of course. But when we have a negative number, the even powers are positive and the odd powers are negative. We’ll copy the row with the powers of −2 below to help you see this.

This figure has five columns and two rows. The first row labels each column: n, n squared, n cubed, n to the fourth power, and n to the fifth power. The second row reads: negative 2, 4, negative 8, 16, and negative 32.

Earlier in this chapter we defined the square root of a number.

If n 2 = m , then n is a square root of m .

And we have used the notation m to denote the principal square root . So m 0 always.

We will now extend the definition to higher roots.

n Th root of a number

If b n = a , then b is an n th root of a number     a .

The principal n th root of a is written a n .

         n is called the index    of the radical.

We do not write the index for a square root. Just like we use the word ‘cubed’ for b 3 , we use the term ‘cube root’ for a 3 .

We refer to [link] to help us find higher roots.

4 3 = 64 64 3 = 4 3 4 = 81 81 4 = 3 ( −2 ) 5 = −32 −32 5 = −2

Could we have an even root of a negative number? No. We know that the square root of a negative number is not a real number. The same is true for any even root. Even roots of negative numbers are not real numbers. Odd roots of negative numbers are real numbers.

Properties of a n

When n is an even number and

  • a 0 , then a n is a real number
  • a < 0 , then a n is not a real number

When n is an odd number, a n is a real number for all values of a .

Simplify: 8 3 81 4 32 5 .

Solution


8 3 Since ( 2 ) 3 = 8 . 2


81 4 Since ( 3 ) 4 = 81 . 3


32 5 Since ( 2 ) 5 = 32 . 2

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Simplify: 27 3 256 4 243 5 .

3 4 3

Got questions? Get instant answers now!

Simplify: 1000 3 16 4 32 5 .

10 2 2

Got questions? Get instant answers now!

Simplify: −64 3 −16 4 −243 5 .

Solution


  1. −64 3 Since ( −4 ) 3 = −64 . −4


  2. −16 4 Think, ( ? ) 4 = −16 . No real number raised to the fourth power is positive. Not a real number.


  3. −243 5 Since ( −3 ) 5 = −243 . −3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Simplify: −125 3 −16 4 −32 5 .

−5 not real −2

Got questions? Get instant answers now!

Simplify: −216 3 −81 4 −1024 5 .

−6 not real −4

Got questions? Get instant answers now!

When we worked with square roots that had variables in the radicand, we restricted the variables to non-negative values. Now we will remove this restriction.

The odd root of a number can be either positive or negative. We have seen that −64 3 = −4 .

But the even root of a non-negative number is always non-negative, because we take the principal n th root    .

Suppose we start with a = −5 .

( −5 ) 4 = 625 625 4 = 5

How can we make sure the fourth root of −5 raised to the fourth power, ( −5 ) 4 is 5? We will see in the following property.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask