# 7.4 Factor special products

 Page 1 / 7
By the end of this section, you will be able to:
• Factor perfect square trinomials
• Factor differences of squares
• Factor sums and differences of cubes
• Choose method to factor a polynomial completely

Before you get started, take this readiness quiz.

1. Simplify: ${\left(12x\right)}^{2}.$
If you missed this problem, review [link] .
2. Multiply: ${\left(m+4\right)}^{2}.$
If you missed this problem, review [link] .
3. Multiply: ${\left(p-9\right)}^{2}.$
If you missed this problem, review [link] .
4. Multiply: $\left(k+3\right)\left(k-3\right).$
If you missed this problem, review [link] .

The strategy for factoring we developed in the last section will guide you as you factor most binomials, trinomials, and polynomials with more than three terms. We have seen that some binomials and trinomials result from special products—squaring binomials and multiplying conjugates. If you learn to recognize these kinds of polynomials, you can use the special products patterns to factor them much more quickly.

## Factor perfect square trinomials

Some trinomials are perfect squares. They result from multiplying a binomial times itself. You can square a binomial by using FOIL, but using the Binomial Squares pattern you saw in a previous chapter saves you a step. Let’s review the Binomial Squares pattern by squaring a binomial using FOIL. The first term is the square of the first term of the binomial and the last term is the square of the last. The middle term is twice the product of the two terms of the binomial.

$\begin{array}{c}\hfill {\left(3x\right)}^{2}+2\left(3x·4\right)+{4}^{2}\hfill \\ \hfill 9{x}^{2}+24x+16\hfill \end{array}$

The trinomial 9 x 2 + 24 +16 is called a perfect square trinomial. It is the square of the binomial 3 x +4.

We’ll repeat the Binomial Squares Pattern here to use as a reference in factoring.

## Binomial squares pattern

If a and b are real numbers,

$\begin{array}{cccc}\hfill {\left(a+b\right)}^{2}={a}^{2}+2ab+{b}^{2}\hfill & & & \hfill \phantom{\rule{2em}{0ex}}{\left(a-b\right)}^{2}={a}^{2}-2ab+{b}^{2}\hfill \end{array}$

When you square a binomial, the product is a perfect square trinomial. In this chapter, you are learning to factor—now, you will start with a perfect square trinomial and factor it into its prime factors.

You could factor this trinomial using the methods described in the last section, since it is of the form ax 2 + bx + c . But if you recognize that the first and last terms are squares and the trinomial fits the perfect square trinomials pattern    , you will save yourself a lot of work.

Here is the pattern—the reverse of the binomial squares pattern.

## Perfect square trinomials pattern

If a and b are real numbers,

$\begin{array}{cccc}\hfill {a}^{2}+2ab+{b}^{2}={\left(a+b\right)}^{2}\hfill & & & \hfill \phantom{\rule{2em}{0ex}}{a}^{2}-2ab+{b}^{2}={\left(a-b\right)}^{2}\hfill \end{array}$

To make use of this pattern, you have to recognize that a given trinomial fits it. Check first to see if the leading coefficient is a perfect square, ${a}^{2}$ . Next check that the last term is a perfect square, ${b}^{2}$ . Then check the middle term—is it twice the product, 2 ab ? If everything checks, you can easily write the factors.

## How to factor perfect square trinomials

Factor: $9{x}^{2}+12x+4$ .

## Solution   Factor: $4{x}^{2}+12x+9$ .

${\left(2x+3\right)}^{2}$

Factor: $9{y}^{2}+24y+16$ .

${\left(3y+4\right)}^{2}$

The sign of the middle term determines which pattern we will use. When the middle term is negative, we use the pattern ${a}^{2}-2ab+{b}^{2}$ , which factors to ${\left(a-b\right)}^{2}$ .

The steps are summarized here.

## Factor perfect square trinomials.

$\begin{array}{ccccccc}\mathbf{\text{Step 1.}}\phantom{\rule{0.2em}{0ex}}\text{Does the trinomial fit the pattern?}\hfill & & & \hfill {a}^{2}+2ab+{b}^{2}\hfill & & & \hfill \phantom{\rule{2em}{0ex}}{a}^{2}-2ab+{b}^{2}\hfill \\ \phantom{\rule{2.5em}{0ex}}•\phantom{\rule{0.5em}{0ex}}\text{Is the first term a perfect square?}\hfill & & & \hfill {\left(a\right)}^{2}\hfill & & & \hfill \phantom{\rule{2em}{0ex}}{\left(a\right)}^{2}\hfill \\ \phantom{\rule{4em}{0ex}}\text{Write it as a square.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}•\phantom{\rule{0.5em}{0ex}}\text{Is the last term a perfect square?}\hfill & & & {\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill & & & \phantom{\rule{2em}{0ex}}{\left(a\right)}^{2}\phantom{\rule{4.5em}{0ex}}{\left(b\right)}^{2}\hfill \\ \phantom{\rule{4em}{0ex}}\text{Write it as a square.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}•\phantom{\rule{0.5em}{0ex}}\text{Check the middle term. Is it}\phantom{\rule{0.2em}{0ex}}2ab?\hfill & & & {\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill & & & \phantom{\rule{2em}{0ex}}{\left(a\right)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{\left(b\right)}^{2}\hfill \\ \mathbf{\text{Step 2.}}\phantom{\rule{0.2em}{0ex}}\text{Write the square of the binomial.}\hfill & & & \hfill {\left(a+b\right)}^{2}\hfill & & & \hfill \phantom{\rule{2em}{0ex}}{\left(a-b\right)}^{2}\hfill \\ \mathbf{\text{Step 3.}}\phantom{\rule{0.2em}{0ex}}\text{Check by multiplying.}\hfill & & & & & & \end{array}$

He charges $125 per job. His monthly expenses are$1,600. How many jobs must he work in order to make a profit of at least $2,400? Alicia Reply at least 20 Ayla what are the steps? Alicia what is algebra Azhar Reply repeated addition and subtraction of the order of operations. i love algebra I'm obsessed. Shemiah hi Krekar One-fourth of the candies in a bag of M&M’s are red. If there are 23 red candies, how many candies are in the bag? Leanna Reply rectangular field solutions Navin Reply What is this? Donna the proudact of 3x^3-5×^2+3 and 2x^2+5x-4 in z7[x]/ is anas Reply ? Choli a rock is thrown directly upward with an initial velocity of 96feet per second from a cliff 190 feet above a beach. The hight of tha rock above the beach after t second is given by the equation h=_16t^2+96t+190 Usman Stella bought a dinette set on sale for$725. The original price was $1,299. To the nearest tenth of a percent, what was the rate of discount? Manhwa Reply 44.19% Scott 40.22% Terence 44.2% Orlando I don't know Donna if you want the discounted price subtract$725 from $1299. then divide the answer by$1299. you get 0.4419... but as percent you get 44.19... but to the nearest tenth... round .19 to .2 and you get 44.2%
Orlando
you could also just divide $725/$1299 and then subtract it from 1. then you get the same answer.
Orlando
p mulripied-5 and add 30 to it
Tausif
Tausif
Can you explain further
p mulripied-5 and add to 30
Tausif
How do you find divisible numbers without a calculator?
TAKE OFF THE LAST DIGIT AND MULTIPLY IT 9. SUBTRACT IT THE DIGITS YOU HAVE LEFT. IF THE ANSWER DIVIDES BY 13(OR IS ZERO), THEN YOUR ORIGINAL NUMBER WILL ALSO DIVIDE BY 13!IS DIVISIBLE BY 13
BAINAMA
When she graduates college, Linda will owe $43,000 in student loans. The interest rate on the federal loans is 4.5% and the rate on the private bank loans is 2%. The total interest she owes for one year was$1,585. What is the amount of each loan?
Sean took the bus from Seattle to Boise, a distance of 506 miles. If the trip took 7 2/3 hours, what was the speed of the bus?
66miles/hour
snigdha
How did you work it out?
Esther
s=mi/hr 2/3~0.67 s=506mi/7.67hr = ~66 mi/hr
Orlando
hello, I have algebra phobia. Subtracting negative numbers always seem to get me confused.
what do you need help in?
Felix
Heather
look at the numbers if they have different signs, it's like subtracting....but you keep the sign of the largest number...
Felix
for example.... -19 + 7.... different signs...subtract.... 12 keep the sign of the "largest" number 19 is bigger than 7.... 19 has the negative sign... Therefore, -12 is your answer...
Felix
—12
Thanks Felix.l also get confused with signs.
Esther
Thank you for this
Shatey
ty
Graham
think about it like you lost $19 (-19), then found$7(+7). Totally you lost just $12 (-12) Annushka I used to struggle a lot with negative numbers and math in general what I typically do is look at it in terms of money I have -$5 in my account I then take out 5 more dollars how much do I have in my account well-\$10 ... I also for a long time would draw it out on a number line to visualize it
Meg
practicing with smaller numbers to understand then working with larger numbers helps too and the song/rhyme same sign add and keep opposite signs subtract keep the sign of the bigger # then you'll be exact
Meg
Bruce drives his car for his job. The equation R=0.575m+42 models the relation between the amount in dollars, R, that he is reimbursed and the number of miles, m, he drives in one day. Find the amount Bruce is reimbursed on a day when he drives 220 miles
168.50=R
Heather
john is 5years older than wanjiru.the sum of their years is27years.what is the age of each
46
mustee
j 17 w 11
Joseph
john is 16. wanjiru is 11.
Felix
27-5=22 22÷2=11 11+5=16
Joyce
I don't see where the answers are.
Ed By Brooke Delaney By OpenStax By OpenStax By George Turner By OpenStax By Yacoub Jayoghli By By Katy Pratt By Stephen Voron By Anh Dao