<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine whether an ordered pair is a solution of a system of linear inequalities
  • Solve a system of linear inequalities by graphing
  • Solve applications of systems of inequalities

Before you get started, take this readiness quiz.

  1. Graph x > 2 on a number line.
    If you missed this problem, review [link] .
  2. Solve the inequality 2 a < 5 a + 12 .
    If you missed this problem, review [link] .
  3. Determine whether the ordered pair ( 3 , 1 2 ) is a solution to the system { x + 2 y = 4 y = 6 x .
    If you missed this problem, review [link]

 

Determine whether an ordered pair is a solution of a system of linear inequalities

The definition of a system of linear inequalities is very similar to the definition of a system of linear equations.

System of linear inequalities

Two or more linear inequalities grouped together form a system of linear inequalities    .

A system of linear inequalities looks like a system of linear equations, but it has inequalities instead of equations. A system of two linear inequalities is shown below.

{ x + 4 y 10 3 x 2 y < 12

To solve a system of linear inequalities, we will find values of the variables that are solutions to both inequalities. We solve the system by using the graphs of each inequality and show the solution as a graph. We will find the region on the plane that contains all ordered pairs ( x , y ) that make both inequalities true.

Solutions of a system of linear inequalities

Solutions of a system of linear inequalities are the values of the variables that make all the inequalities true.

The solution of a system of linear inequalities is shown as a shaded region in the x-y coordinate system that includes all the points whose ordered pairs make the inequalities true.

To determine if an ordered pair is a solution to a system of two inequalities, we substitute the values of the variables into each inequality. If the ordered pair makes both inequalities true, it is a solution to the system.

Determine whether the ordered pair is a solution to the system. { x + 4 y 10 3 x 2 y < 12

(−2, 4) (3,1)

Solution

  1. Is the ordered pair (−2, 4) a solution?
    This figure says, “We substitute x = -2 and y = 4 into both inequalities. The first inequality, x + 4 y is greater than or equal to 10 becomes -2 plus 4 times 4 is greater than or less than 10 or 14 is great than or less than 10 which is true. The second inequality, 3x – 2y is less than 12 becomes 3 times -2 – 2 times 4 is less than 12 or  -14 is less than 12 which is true.

The ordered pair (−2, 4) made both inequalities true. Therefore (−2, 4) is a solution to this system.

  1. Is the ordered pair (3,1) a solution?
    This figure says, “We substitute x  3 and y = 1 into both inequalities.” The first inequality, x + 4y  is greater than or equal to 10 becomes 3 + 4 times 1 is greater than or equal to 10 or y is greater than or equal to 10 which is false. The second inequality, 3x -2y is less than 12 becomes 3 times 3 – two times 1 is less than 12 or 7 is less than 12 which is true.

The ordered pair (3,1) made one inequality true, but the other one false. Therefore (3,1) is not a solution to this system.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Determine whether the ordered pair is a solution to the system.
{ x 5 y > 10 2 x + 3 y > −2

( 3 , −1 ) ( 6 , −3 )

no yes

Got questions? Get instant answers now!

Determine whether the ordered pair is a solution to the system.
{ y > 4 x 2 4 x y < 20

( 2 , 1 ) ( 4 , −1 )

no no

Got questions? Get instant answers now!

Solve a system of linear inequalities by graphing

The solution to a single linear inequality is the region on one side of the boundary line that contains all the points that make the inequality true. The solution to a system of two linear inequalities is a region that contains the solutions to both inequalities. To find this region, we will graph each inequality separately and then locate the region where they are both true. The solution is always shown as a graph.

How to solve a system of linear inequalities

Solve the system by graphing.

{ y 2 x 1 y < x + 1

Solution

This is a table with three columns and several rows. The first row says, “Step 1: Graph the first inequality. We will graph y is greater than or equal to 2x – 1.” There are two equations givens, y is greater than or equal to 2x – 1 and y is less than x + 1. The table then reads, “Graph the boundary line. We graph the line y = 2x – 1. It is a solid line because the inequality sign is greater than or equal to. Shade in the side of the boundary line where the inequality is true. We choose (0, 0) as a test point. It is a solution to y is greater than or equal to 2x – 1, so we shad in the left side of the boundary line.” There is a figure of a line graphed on an x y coordinate plane. The area to the left of the line is shaded. The second row then says, “Step 2: On the same grid, graph the second inequality. We will graph y is less than x + 1 on the same grid. Grph the boundary line. We graph the lin y = x + 1. It is a dashed line because the inequality sign is less than. There is a graph which shows two lines graphed on an x y coordinate plane. The area to the left of one line is shaded. The area to the right of the second line is shaded. There is a small area where the shaded areas overlap. The table then says, “Shade in the side of that boundary line where the inequality is true. Again we use (0, 0) as a test point. It is a solution so we shade in that side of the line y = x + 1. The third row then says, “Step 3: The solution is the region where the shading overlaps. The poing where the boundary lines intersect is not a solution because it is not a solution to y is less than x + 1. The solution is all points in the purple shaded region.” The fourth row then says, “Step 4: Check by choosing a test point. We’ll use (-1, -1) as a test point. Is (-1, -1) a solution to y is greater than or equal to 2x – 1? -1 is greater than or equal to 2 times -1 – 1 or -1 is greater than or equal to -3 true.”
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A veterinarian is enclosing a rectangular outdoor running area against his building for the dogs he cares for. He needs to maximize the area using 100 feet of fencing. The quadratic equation A=x(100−2x) gives the area, A , of the dog run for the length, x , of the building that will border the dog run. Find the length of the building that should border the dog run to give the maximum area, and then find the maximum area of the dog run.
Elizabeth Reply
ggfcc
Mike
Washing his dad’s car alone, eight year old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour. How long does it take the Levi’s dad to wash the car by himself?
Gagan Reply
1,75hrs
Mike
I'm going to guess. Divide Levi's time by 2. Then divide 1 hour by 2. 1.25 + 0.5 = 1.3?
John
Oops I mean 1.75
John
I'm guessing this because since I have divide 1 hour by 2, I have to do the same for the 2.5 hours it takes Levi by himself.
John
Drew burned 1,800 calories Friday playing 1 hour of basketball and canoeing for 2 hours. On Saturday, he spent 2 hours playing basketball and 3 hours canoeing and burned 3,200 calories. How many calories did he burn per hour when playing basketball?
Marie Reply
Brandon has a cup of quarters and dimes with a total value of $3.80. The number of quarters is four less than twice the number of dimes. How many quarters and how many dimes does Brandon have?
Kendra Reply
Tickets to a Broadway show cost $35 for adults and $15 for children. The total receipts for 1650 tickets at one performance were $47,150. How many adult and how many child tickets were sold?
dana Reply
825
Carol
Arnold invested $64,000, some at 5.5% interest and the rest at 9%. How much did he invest at each rate if he received $4,500 in interest in one year? How do I do this
Tanesia Reply
how to square
Fiona Reply
easiest way to find the square root of a large number?
Jackie
the accompanying figure shows known flow rates of hydrocarbons into and out of a network of pipes at an oil refinery set up a linear system whose solution provides the unknown flow rates (b) solve the system for the unknown flow rates (c) find the flow rates and directions of flow if x4=50and x6=0
Sabee Reply
What is observation
adeyemi Reply
I'm confused by the question. Can you describe or explain the math question it pertains to?
Melissa
there is no math to it because all you use is your vision or gaze to the sorrounding areas
Cesarp
Teegan likes to play golf. He has budgeted $60 next month for the driving range. It costs him $10.55 for a bucket of balls each time he goes. What is the maximum number of times he can go to the driving range next month?
Sunnyshay Reply
5 times max
Anton
Felecia left her home to visit her daughter, driving 45mph. Her husband waited for the dog sitter to arrive and left home 20 minutes, or 1/3 hour later. He drove 55mph to catch up to Felecia. How long before he reaches her?
Sophia Reply
35 min
Debra
Carmen wants to tile the floor of his house. He will need 1,000 square feet of tile. He will do most of the floor with a tile that costs $1.50 per square foot, but also wants to use an accent tile that costs $9.00 per square foot. How many square feet of each tile should he plan to use if he wants the overall cost to be $3 per square foot?
Parker Reply
what you wanna get
Cesar
800 sq. ft @ $1.50 & 200 sq. ft @ $9.00
Marco
Geneva treated her parents to dinner at their favorite restaurant. The bill was $74.25. Geneva wants to leave 16 % of the total - bill as a tip. How much should the tip be?
74.25 × .16 then get the total and that will be your tip
David
$74.25 x 0.16 = $11.88 total bill: $74.25 + $11.88 = $86.13
ericka
yes and tip 16% will be $11.88
David
what is the shorter way to do it
Cesar Reply
Priam has dimes and pennies in a cup holder in his car. The total value of the coins is $4.21. The number of dimes is three less than four times the number of pennies. How many dimes and how many pennies are in the cup?
Alexandra Reply
Practice Key Terms 1

Get the best Elementary algebra course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask