<< Chapter < Page Chapter >> Page >

Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.

Wayne 21 mph, Dennis 28 mph

Got questions? Get instant answers now!

Jeromy can drive from his house in Cleveland to his college in Chicago in 4.5 hours. It takes his mother 6 hours to make the same drive. Jeromy drives 20 miles per hour faster than his mother. Find Jeromy’s speed and his mother’s speed.

Jeromy 80 mph, mother 60 mph

Got questions? Get instant answers now!

In [link] , the last example, we had two trains traveling the same distance. The diagram and the chart helped us write the equation we solved. Let’s see how this works in another case.

Christopher and his parents live 115 miles apart. They met at a restaurant between their homes to celebrate his mother’s birthday. Christopher drove 1.5 hours while his parents drove 1 hour to get to the restaurant. Christopher’s average speed was 10 miles per hour faster than his parents’ average speed. What were the average speeds of Christopher and of his parents as they drove to the restaurant?

Solution

Step 1. Read the problem. Make sure all the words and ideas are understood.


  • Draw a diagram to illustrate what it happening. Below shows a sketch of what is happening in the example.

    Christopher and Parents are represented by two separate lines. The distance between these two lines is marked 115 miles. Lunch is also located between Christopher and Parents. There is an arrow from Christopher that is marked 10 mph faster and 1.5 hours. There is an arrow from Parents marked 1 hour. These two arrows meet somewhere between Christopher and Parents.
  • Create a table to organize the information.
  • Label the columns rate, time, distance.
  • List the two scenarios.
  • Write in the information you know.

A table with three rows and four columns and an extra cell at the bottom of the fourth column. The first row is a header row and reads from left to right blank, Rate (mph), Time (hrs), and Distance (miles). Below the blank header cell, we have Christopher and Parents. Below the time header cell, we have 1.5 and 1. The extra cell contains 115. The rest of the cells are blank.

Step 2. Identify what we are looking for.

  • We are asked to find the average speeds of Christopher and his parents.

Step 3. Name what we are looking for. Choose a variable to represent that quantity.

  • Complete the chart.
  • Use variable expressions to represent that quantity in each row.
  • We are looking for their average speeds. Let’s let r represent the average speed of the parents. Since the Christopher’s speed is 10 mph faster, we represent that as r + 10 .

Fill in the speeds into the chart.

A table with three rows and four columns and an extra cell at the bottom of the fourth column. The first row is a header row and reads from left to right blank, Rate (mph), Time (hrs), and Distance (miles). Below the blank header cell, we have Christopher and Parents. Below the rate header cell, we have r plus 10 and r. Below the time header cell, we have 1.5 and 1. Below the distance header cell, we have 1.5 times the quantity (r plus 10), r, and 115.

Multiply the rate times the time to get the distance.

Step 4. Translate into an equation.

  • Restate the problem in one sentence with all the important information.
  • Then, translate the sentence into an equation.
  • Again, we need to identify a relationship between the distances in order to write an equation. Look at the diagram we created above and notice the relationship between the distance Christopher traveled and the distance his parents traveled.

The distance Christopher travelled plus the distance his parents travel must add up to 115 miles. So we write:


The sentence, “The distance traveled by Christopher plus the distance traveled by his parents equals 115 miles,” can be translated to an equation. Translate “distance traveled by Christopher” to 1.5 times the quantity r plus 10, and translate “distance traveled by his parents” to r. The full equation is 1.5 times the quantity r plus 10, plus r equals 115.

Step 5. Solve the equation using good algebra techniques.

Now solve this equation. 1.5 ( r + 10 ) + r = 115 1.5 r + 15 + r = 115 2.5 r + 15 = 115 2.5 r = 100 r = 40 So the parents’ speed was 40 mph. Christopher’s speed is r + 10 . r + 10 40 + 10 50 Christopher’s speed was 50 mph.

Step 6. Check the answer in the problem and make sure it makes sense.

Christopher drove 50 mph (1.5 hours) = 75 miles His parents drove 40 mph (1 hours) = 40 miles _______ 115 miles

Step 7. Answer the question with a complete sentence. Christopher’s speed was 50 mph. His parents’ speed was 40 mph.

Got questions? Get instant answers now!

Questions & Answers

Wayne is hanging a string of lights 57 feet long around the three sides of his patio, which is adjacent to his house. the length of his patio, the side along the house, is 5 feet longer than twice it's width. Find the length and width of the patio.
Katherine Reply
Amara currently sells televisions for company A at a salary of $17,000 plus a $100 commission for each television she sells. Company B offers her a position with a salary of $29,000 plus a $20 commission for each television she sells. How many televisions would Amara need to sell for the options to be equal?
Marisol Reply
what is the quantity and price of the televisions for both options?
karl
Amara has to sell 120 televisions to make 29,000 of the salary of company B. 120 * TV 100= commission 12,000+ 17,000 = of company a salary 29,000 17000+
Ciid
Amara has to sell 120 televisions to make 29,000 of the salary of company B. 120 * TV 100= commission 12,000+ 17,000 = of company a salary 29,000
Ciid
I'm mathematics teacher from highly recognized university.
Mzo Reply
is anyone else having issues with the links not doing anything?
Helpful Reply
Yes
Val
chapter 1 foundations 1.2 exercises variables and algebraic symbols
theresa Reply
June needs 45 gallons of punch for a party and has 2 different coolers to carry it in. The bigger cooler is 5 times as large as the smaller cooler. How many gallons can each cooler hold? Enter the answers in decimal form.
Samer Reply
Joseph would like to make 12 pounds of a coffee blend at a cost of $6.25 per pound. He blends Ground Chicory at $4.40 a pound with Jamaican Blue Mountain at $8.84 per pound. How much of each type of coffee should he use?
Samer
4x6.25= $25 coffee blend 4×4.40= $17.60 ground chicory 4x8.84= 35.36 blue mountain. In total they will spend for 12 pounds $77.96 they will spend in total
tyler
DaMarcus and Fabian live 23 miles apart and play soccer at a park between their homes. DaMarcus rode his bike for three-quarters of an hour and Fabian rode his bike for half an hour to get to the park. Fabian’s speed was six miles per hour faster than DaMarcus’ speed. Find the speed of both soccer players.
Sage Reply
i need help how to do this is confusing
Alvina Reply
what kind of math is it?
Danteii
help me to understand
Alvina Reply
huh, what is the algebra problem
Daniel
How many soldiers are there in a group of 27 sailors and soldiers if there are four fifths many sailors as soldiers?
tyler
What is the domain and range of heaviside
Christopher Reply
What is the domain and range of Heaviside and signum
Christopher
25-35
Fazal
The hypotenuse of a right triangle is 10cm long. One of the triangle’s legs is three times the length of the other leg. Find the lengths of the three sides of the triangle.
Edi Reply
Tickets for a show are $70 for adults and $50 for children. For one evening performance, a total of 300 tickets were sold and the receipts totaled $17,200. How many adult tickets and how many child tickets were sold?
Mum Reply
A 50% antifreeze solution is to be mixed with a 90% antifreeze solution to get 200 liters of a 80% solution. How many liters of the 50% solution and how many liters of the 90% solution will be used?
Edi Reply
June needs 45 gallons of punch for a party and has 2 different coolers to carry it in. The bigger cooler is 5 times as large as the smaller cooler. How many gallons can each cooler hold?
Jesus Reply
Washing his dad’s car alone, eight-year-old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour. How long does it take the Levi’s dad to wash the car by himself?
Ronald Reply

Get the best Elementary algebra course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask