# 1.8 The real numbers  (Page 2/13)

 Page 2 / 13

Simplify: $\text{−}\sqrt{4}$ $\text{−}\sqrt{225}.$

$-2$ $-15$

Simplify: $\text{−}\sqrt{81}$ $\text{−}\sqrt{100}.$

$-9$ $-10$

## Identify integers, rational numbers, irrational numbers, and real numbers

We have already described numbers as counting number s , whole number s , and integers    . What is the difference between these types of numbers?

$\begin{array}{cccccc}\text{Counting numbers}\hfill & & & & & 1,2,3,4,\text{…}\hfill \\ \text{Whole numbers}\hfill & & & & & 0,1,2,3,4,\text{…}\hfill \\ \text{Integers}\hfill & & & & & \text{…}-3,-2,-1,0,1,2,3,\text{…}\hfill \end{array}$

What type of numbers would we get if we started with all the integers and then included all the fractions? The numbers we would have form the set of rational numbers. A rational number    is a number that can be written as a ratio of two integers.

## Rational number

A rational number is a number of the form $\frac{p}{q},$ where p and q are integers and $q\ne 0.$

A rational number can be written as the ratio of two integers.

All signed fractions, such as $\frac{4}{5},-\phantom{\rule{0.2em}{0ex}}\frac{7}{8},\frac{13}{4},-\phantom{\rule{0.2em}{0ex}}\frac{20}{3}$ are rational numbers. Each numerator and each denominator is an integer.

Are integers rational numbers? To decide if an integer is a rational number, we try to write it as a ratio of two integers. Each integer can be written as a ratio of integers in many ways. For example, 3 is equivalent to $\frac{3}{1},\frac{6}{2},\frac{9}{3},\frac{12}{4},\frac{15}{5}\text{…}$

An easy way to write an integer as a ratio of integers is to write it as a fraction with denominator one.

$\begin{array}{ccccccc}\hfill 3=\frac{3}{1}\hfill & & & \hfill -8=-\phantom{\rule{0.2em}{0ex}}\frac{8}{1}\hfill & & & \hfill 0=\frac{0}{1}\hfill \end{array}$

Since any integer can be written as the ratio of two integers, all integers are rational numbers ! Remember that the counting numbers and the whole numbers are also integers, and so they, too, are rational.

What about decimals? Are they rational? Let’s look at a few to see if we can write each of them as the ratio of two integers.

We’ve already seen that integers are rational numbers. The integer $-8$ could be written as the decimal $-8.0.$ So, clearly, some decimals are rational.

Think about the decimal 7.3. Can we write it as a ratio of two integers? Because 7.3 means $7\frac{3}{10},$ we can write it as an improper fraction, $\frac{73}{10}.$ So 7.3 is the ratio of the integers 73 and 10. It is a rational number.

In general, any decimal that ends after a number of digits (such as 7.3 or $-1.2684\right)$ is a rational number. We can use the place value of the last digit as the denominator when writing the decimal as a fraction.

Write as the ratio of two integers: $-27$ 7.31.

$\begin{array}{cccccc}& & & & & -27\hfill \\ \\ \\ \text{Write it as a fraction with denominator}\phantom{\rule{0.2em}{0ex}}1.\hfill & & & & & \frac{-27}{1}\hfill \end{array}$

$\begin{array}{cccccc}& & & & & \phantom{\rule{0.3em}{0ex}}7.31\hfill \\ \\ \\ \begin{array}{c}\text{Write is as a mixed number. Remember.}\hfill \\ 7\phantom{\rule{0.2em}{0ex}}\text{is the whole number and the decimal}\hfill \\ \text{part,}\phantom{\rule{0.2em}{0ex}}0.31,\phantom{\rule{0.2em}{0ex}}\text{indicates hundredths.}\hfill \end{array}\hfill & & & & & \phantom{\rule{0.3em}{0ex}}7\frac{31}{100}\hfill \\ \\ \\ \text{Convert to an improper fraction.}\hfill & & & & & \phantom{\rule{0.3em}{0ex}}\frac{731}{100}\hfill \end{array}$

So we see that $-27$ and 7.31 are both rational numbers, since they can be written as the ratio of two integers.

Write as the ratio of two integers: $-24$ 3.57.

$\frac{-24}{1}$ $\frac{357}{100}$

Write as the ratio of two integers: $-19$ 8.41.

$\frac{-19}{1}$ $\frac{841}{100}$

Let’s look at the decimal form of the numbers we know are rational.

We have seen that every integer is a rational number , since $a=\frac{a}{1}$ for any integer, a . We can also change any integer to a decimal by adding a decimal point and a zero.

$\begin{array}{ccccccccccccccccccccc}\text{Integer}\hfill & & & & & -2\hfill & & & -1\hfill & & & 0\hfill & & & 1\hfill & & & 2\hfill & & & 3\hfill \\ \text{Decimal form}\hfill & & & & & -2.0\hfill & & & -1.0\hfill & & & 0.0\hfill & & & 1.0\hfill & & & 2.0\hfill & & & 3.0\hfill \end{array}$
$\text{These decimal numbers stop.}$

We have also seen that every fraction is a rational number . Look at the decimal form of the fractions we considered above.

$\begin{array}{ccccccccccccccc}\text{Ratio of integers}\hfill & & & & & \frac{4}{5}\hfill & & & -\phantom{\rule{0.2em}{0ex}}\frac{7}{8}\hfill & & & \frac{13}{4}\hfill & & & -\phantom{\rule{0.2em}{0ex}}\frac{20}{3}\hfill \\ \text{The decimal form}\hfill & & & & & 0.8\hfill & & & -0.875\hfill & & & 3.25\hfill & & & \begin{array}{}\\ -6.666\text{…}\hfill \\ -6.\stackrel{\text{–}}{6}\hfill \end{array}\hfill \end{array}$

#### Questions & Answers

Tickets for a show are $70 for adults and$50 for children. For one evening performance, a total of 300 tickets were sold and the receipts totaled $17,200. How many adult tickets and how many child tickets were sold? Mum Reply A 50% antifreeze solution is to be mixed with a 90% antifreeze solution to get 200 liters of a 80% solution. How many liters of the 50% solution and how many liters of the 90% solution will be used? Edi Reply June needs 45 gallons of punch for a party and has 2 different coolers to carry it in. The bigger cooler is 5 times as large as the smaller cooler. How many gallons can each cooler hold? Jesus Reply Washing his dad’s car alone, eight-year-old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour. How long does it take the Levi’s dad to wash the car by himself? Ronald Reply Bruce drives his car for his job. The equation R=0.575m+42 models the relation between the amount in dollars, R, that he is reimbursed and the number of miles, m, he drives in one day. Find the amount Bruce is reimbursed on a day when he drives 220 miles. Dojzae Reply LeBron needs 150 milliliters of a 30% solution of sulfuric acid for a lab experiment but only has access to a 25% and a 50% solution. How much of the 25% and how much of the 50% solution should he mix to make the 30% solution? Xona Reply 5% Michael hey everyone how to do algebra The Reply Felecia answer 1.5 hours before he reaches her Adriana Reply I would like to solve the problem -6/2x rachel Reply 12x Andrew how Christian Does the x represent a number or does it need to be graphed ? latonya -3/x Venugopal -3x is correct Atul Arnold invested$64,000, some at 5.5% interest and the rest at 9%. How much did he invest at each rate if he received $4,500 in interest in one year? Stephanie Reply Tickets for the community fair cost$12 for adults and $5 for children. On the first day of the fair, 312 tickets were sold for a total of$2204. How many adult tickets and how many child tickets were sold?
Alpha Reply
220
gayla
Three-fourths of the people at a concert are children. If there are 87 children, what is the total number of people at the concert?
Tsimmuaj Reply
Erica earned a total of $50,450 last year from her two jobs. The amount she earned from her job at the store was$1,250 more than four times the amount she earned from her job at the college. How much did she earn from her job at the college?
Tsimmuaj
Erica earned a total of $50,450 last year from her two jobs. The amount she earned from her job at the store was$1,250 more than four times the amount she earned from her job at the college. How much did she earn from her job at the college?
Tsimmuaj
? Is there anything wrong with this passage I found the total sum for 2 jobs, but found why elaborate on extra If I total one week from the store *4 would = the month than the total is = x than x can't calculate 10 month of a year
candido
what would be wong
candido
87 divided by 3 then multiply that by 4. 116 people total.
Melissa
the actual number that has 3 out of 4 of a whole pie
candido
was having a hard time finding
Teddy
use Matrices for the 2nd question
Daniel
One number is 11 less than the other number. If their sum is increased by 8, the result is 71. Find the numbers.
Tsimmuaj Reply
26 + 37 = 63 + 8 = 71
gayla
26+37=63+8=71
ziad
11+52=63+8=71
Thisha
how do we know the answer is correct?
Thisha
23 is 11 less than 37. 23+37=63. 63+8=71. that is what the question asked for.
gayla
23 +11 = 37. 23+37=63 63+8=71
Gayla
by following the question. one number is 11 less than the other number 26+11=37 so 26+37=63+8=71
Gayla
your answer did not fit the guidelines of the question 11 is 41 less than 52.
gayla
71-8-11 =52 is this correct?
Ruel
let the number is 'x' and the other number is "x-11". if their sum is increased means: x+(x-11)+8 result will be 71. so x+(x-11)+8=71 2x-11+8=71 2x-3=71 2x=71+3 2x=74 1/2(2x=74)1/2 x=37 final answer
tesfu
just new
Muwanga
Amara currently sells televisions for company A at a salary of $17,000 plus a$100 commission for each television she sells. Company B offers her a position with a salary of $29,000 plus a$20 commission for each television she sells. How televisions would Amara need to sell for the options to be equal?
Tsimmuaj Reply
yes math
Kenneth
company A 13 company b 5. A 17,000+13×100=29,100 B 29,000+5×20=29,100
gayla
need help with math to do tsi test
Toocute
me too
Christian
have you tried the TSI practice test ***tsipracticetest.com
gayla
DaMarcus and Fabian live 23 miles apart and play soccer at a park between their homes. DaMarcus rode his bike for 34 of an hour and Fabian rode his bike for 12 of an hour to get to the park. Fabian’s speed was 6 miles per hour faster than DaMarcus’s speed. Find the speed of both soccer players.
gustavo Reply
?
Ann
DaMarcus: 16 mi/hr Fabian: 22 mi/hr
Sherman

### Read also:

#### Get the best Elementary algebra course in your pocket!

Source:  OpenStax, Elementary algebra. OpenStax CNX. Jan 18, 2017 Download for free at http://cnx.org/content/col12116/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications? By   By By     