<< Chapter < Page Chapter >> Page >

Deriving the equation of an ellipse centered at the origin

To derive the equation of an ellipse    centered at the origin, we begin with the foci ( c , 0 ) and ( c , 0 ) . The ellipse is the set of all points ( x , y ) such that the sum of the distances from ( x , y ) to the foci is constant, as shown in [link] .

If ( a , 0 ) is a vertex    of the ellipse, the distance from ( c , 0 ) to ( a , 0 ) is a ( c ) = a + c . The distance from ( c , 0 ) to ( a , 0 ) is a c . The sum of the distances from the foci    to the vertex is

( a + c ) + ( a c ) = 2 a

If ( x , y ) is a point on the ellipse, then we can define the following variables:

d 1 = the distance from  ( c , 0 )  to  ( x , y ) d 2 = the distance from  ( c , 0 )  to  ( x , y )

By the definition of an ellipse, d 1 + d 2 is constant for any point ( x , y ) on the ellipse. We know that the sum of these distances is 2 a for the vertex ( a , 0 ) . It follows that d 1 + d 2 = 2 a for any point on the ellipse. We will begin the derivation by applying the distance formula. The rest of the derivation is algebraic.

                                       d 1 + d 2 = ( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a Distance formula ( x + c ) 2 + y 2 + ( x c ) 2 + y 2 = 2 a Simplify expressions .                              ( x + c ) 2 + y 2 = 2 a ( x c ) 2 + y 2 Move radical to opposite side .                                ( x + c ) 2 + y 2 = [ 2 a ( x c ) 2 + y 2 ] 2 Square both sides .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 Expand the squares .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + x 2 2 c x + c 2 + y 2 Expand remaining squares .                                               2 c x = 4 a 2 4 a ( x c ) 2 + y 2 2 c x Combine like terms .                                     4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 Isolate the radical .                                         c x a 2 = a ( x c ) 2 + y 2 Divide by 4 .                                     [ c x a 2 ] 2 = a 2 [ ( x c ) 2 + y 2 ] 2 Square both sides .                      c 2 x 2 2 a 2 c x + a 4 = a 2 ( x 2 2 c x + c 2 + y 2 ) Expand the squares .                      c 2 x 2 2 a 2 c x + a 4 = a 2 x 2 2 a 2 c x + a 2 c 2 + a 2 y 2 Distribute  a 2 .                   a 2 x 2 c 2 x 2 + a 2 y 2 = a 4 a 2 c 2 Rewrite .                     x 2 ( a 2 c 2 ) + a 2 y 2 = a 2 ( a 2 c 2 ) Factor common terms .                                x 2 b 2 + a 2 y 2 = a 2 b 2 Set  b 2 = a 2 c 2 .                              x 2 b 2 a 2 b 2 + a 2 y 2 a 2 b 2 = a 2 b 2 a 2 b 2 Divide both sides by  a 2 b 2 .                                       x 2 a 2 + y 2 b 2 = 1 Simplify .

Thus, the standard equation of an ellipse is x 2 a 2 + y 2 b 2 = 1. This equation defines an ellipse centered at the origin. If a > b , the ellipse is stretched further in the horizontal direction, and if b > a , the ellipse is stretched further in the vertical direction.

Writing equations of ellipses centered at the origin in standard form

Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard forms of equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By learning to interpret standard forms of equations, we are bridging the relationship between algebraic and geometric representations of mathematical phenomena.

The key features of the ellipse    are its center, vertices , co-vertices , foci    , and lengths and positions of the major and minor axes . Just as with other equations, we can identify all of these features just by looking at the standard form of the equation. There are four variations of the standard form of the ellipse. These variations are categorized first by the location of the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented along with a description of how the parts of the equation relate to the graph. Interpreting these parts allows us to form a mental picture of the ellipse.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask