<< Chapter < Page Chapter >> Page >

Deriving the equation of an ellipse centered at the origin

Let ( c , 0 ) and ( c , 0 ) be the foci    of a hyperbola centered at the origin. The hyperbola is the set of all points ( x , y ) such that the difference of the distances from ( x , y ) to the foci is constant. See [link] .

If ( a , 0 ) is a vertex of the hyperbola, the distance from ( c , 0 ) to ( a , 0 ) is a ( c ) = a + c . The distance from ( c , 0 ) to ( a , 0 ) is c a . The sum of the distances from the foci to the vertex is

( a + c ) ( c a ) = 2 a

If ( x , y ) is a point on the hyperbola, we can define the following variables:

d 2 = the distance from  ( c , 0 )  to  ( x , y ) d 1 = the distance from  ( c , 0 )  to  ( x , y )

By definition of a hyperbola, d 2 d 1 is constant for any point ( x , y ) on the hyperbola. We know that the difference of these distances is 2 a for the vertex ( a , 0 ) . It follows that d 2 d 1 = 2 a for any point on the hyperbola. As with the derivation of the equation of an ellipse, we will begin by applying the distance formula    . The rest of the derivation is algebraic. Compare this derivation with the one from the previous section for ellipses.

                                       d 2 d 1 = ( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a Distance Formula ( x + c ) 2 + y 2 ( x c ) 2 + y 2 = 2 a Simplify expressions .                             ( x + c ) 2 + y 2 = 2 a + ( x c ) 2 + y 2 Move radical to opposite side .                               ( x + c ) 2 + y 2 = ( 2 a + ( x c ) 2 + y 2 ) 2 Square both sides .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 Expand the squares .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + x 2 2 c x + c 2 + y 2 Expand remaining square .                                               2 c x = 4 a 2 + 4 a ( x c ) 2 + y 2 2 c x Combine like terms .                                    4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 Isolate the radical .                                        c x a 2 = a ( x c ) 2 + y 2 Divide by 4 .                                    ( c x a 2 ) 2 = a 2 [ ( x c ) 2 + y 2 ] 2 Square both sides .                      c 2 x 2 2 a 2 c x + a 4 = a 2 ( x 2 2 c x + c 2 + y 2 ) Expand the squares .                     c 2 x 2 2 a 2 c x + a 4 = a 2 x 2 2 a 2 c x + a 2 c 2 + a 2 y 2 Distribute  a 2 .                                    a 4 + c 2 x 2 = a 2 x 2 + a 2 c 2 + a 2 y 2 Combine like terms .                   c 2 x 2 a 2 x 2 a 2 y 2 = a 2 c 2 a 4 Rearrange terms .                     x 2 ( c 2 a 2 ) a 2 y 2 = a 2 ( c 2 a 2 ) Factor common terms .                               x 2 b 2 a 2 y 2 = a 2 b 2 Set  b 2 = c 2 a 2 .                              x 2 b 2 a 2 b 2 a 2 y 2 a 2 b 2 = a 2 b 2 a 2 b 2 Divide both sides by  a 2 b 2                                      x 2 a 2 y 2 b 2 = 1

This equation defines a hyperbola centered at the origin with vertices ( ± a , 0 ) and co-vertices ( 0 ± b ) .

Standard forms of the equation of a hyperbola with center (0,0)

The standard form of the equation of a hyperbola with center ( 0 , 0 ) and transverse axis on the x -axis is

x 2 a 2 y 2 b 2 = 1

where

  • the length of the transverse axis is 2 a
  • the coordinates of the vertices are ( ± a , 0 )
  • the length of the conjugate axis is 2 b
  • the coordinates of the co-vertices are ( 0, ± b )
  • the distance between the foci is 2 c , where c 2 = a 2 + b 2
  • the coordinates of the foci are ( ± c , 0 )
  • the equations of the asymptotes are y = ± b a x

See [link] a .

The standard form of the equation of a hyperbola with center ( 0 , 0 ) and transverse axis on the y -axis is

y 2 a 2 x 2 b 2 = 1

where

  • the length of the transverse axis is 2 a
  • the coordinates of the vertices are ( 0, ± a )
  • the length of the conjugate axis is 2 b
  • the coordinates of the co-vertices are ( ± b , 0 )
  • the distance between the foci is 2 c , where c 2 = a 2 + b 2
  • the coordinates of the foci are ( 0, ± c )
  • the equations of the asymptotes are y = ± a b x

See [link] b .

Note that the vertices, co-vertices, and foci are related by the equation c 2 = a 2 + b 2 . When we are given the equation of a hyperbola, we can use this relationship to identify its vertices and foci.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask