<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use arrow notation.
  • Solve applied problems involving rational functions.
  • Find the domains of rational functions.
  • Identify vertical asymptotes.
  • Identify horizontal asymptotes.
  • Graph rational functions.

Suppose we know that the cost of making a product is dependent on the number of items, x , produced. This is given by the equation C ( x ) = 15,000 x 0.1 x 2 + 1000. If we want to know the average cost for producing x items, we would divide the cost function by the number of items, x .

The average cost function, which yields the average cost per item for x items produced, is

f ( x ) = 15,000 x 0.1 x 2 + 1000 x

Many other application problems require finding an average value in a similar way, giving us variables in the denominator. Written without a variable in the denominator, this function will contain a negative integer power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers for exponents. In this section, we explore rational functions, which have variables in the denominator.

Using arrow notation

We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit functions. Examine these graphs, as shown in [link] , and notice some of their features.

Graphs of f(x)=1/x and f(x)=1/x^2

Several things are apparent if we examine the graph of f ( x ) = 1 x .

  1. On the left branch of the graph, the curve approaches the x -axis ( y = 0 )   as   x .
  2. As the graph approaches x = 0 from the left, the curve drops, but as we approach zero from the right, the curve rises.
  3. Finally, on the right branch of the graph, the curves approaches the x- axis ( y = 0 )   as   x .

To summarize, we use arrow notation    to show that x or f ( x ) is approaching a particular value. See [link] .

Symbol Meaning
x a x approaches a from the left ( x < a but close to a )
x a + x approaches a from the right ( x > a but close to a )
x x approaches infinity ( x increases without bound)
x x approaches negative infinity ( x decreases without bound)
f ( x ) the output approaches infinity (the output increases without bound)
f ( x ) the output approaches negative infinity (the output decreases without bound)
f ( x ) a the output approaches a

Local behavior of f ( x ) = 1 x

Let’s begin by looking at the reciprocal function, f ( x ) = 1 x . We cannot divide by zero, which means the function is undefined at x = 0 ; so zero is not in the domain . As the input values approach zero from the left side (becoming very small, negative values), the function values decrease without bound (in other words, they approach negative infinity). We can see this behavior in [link] .

x –0.1 –0.01 –0.001 –0.0001
f ( x ) = 1 x –10 –100 –1000 –10,000

We write in arrow notation

as  x 0 , f ( x )

As the input values approach zero from the right side (becoming very small, positive values), the function values increase without bound (approaching infinity). We can see this behavior in [link] .

x 0.1 0.01 0.001 0.0001
f ( x ) = 1 x 10 100 1000 10,000

We write in arrow notation

As  x 0 + ,   f ( x ) .

See [link] .

Graph of f(x)=1/x which denotes the end behavior. As x goes to negative infinity, f(x) goes to 0, and as x goes to 0^-, f(x) goes to negative infinity. As x goes to positive infinity, f(x) goes to 0, and as x goes to 0^+, f(x) goes to positive infinity.

This behavior creates a vertical asymptote , which is a vertical line that the graph approaches but never crosses. In this case, the graph is approaching the vertical line x = 0 as the input becomes close to zero. See [link] .

Questions & Answers

how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
Practice Key Terms 5

Get the best College algebra course in your pocket!





Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask