# 2.2 Linear equations in one variable  (Page 5/15)

 Page 5 / 15

Given $\text{\hspace{0.17em}}m=4,$ find the equation of the line in slope-intercept form passing through the point $\text{\hspace{0.17em}}\left(2,5\right).$

$y=4x-3$

## Finding the equation of a line passing through two given points

Find the equation of the line passing through the points $\text{\hspace{0.17em}}\left(3,4\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(0,-3\right).\text{\hspace{0.17em}}$ Write the final equation in slope-intercept form.

First, we calculate the slope using the slope formula and two points.

$\begin{array}{ccc}\hfill m& =& \frac{-3-4}{0-3}\hfill \\ & =& \frac{-7}{-3}\hfill \\ & =& \frac{7}{3}\hfill \end{array}$

Next, we use the point-slope formula with the slope of $\text{\hspace{0.17em}}\frac{7}{3},$ and either point. Let’s pick the point $\text{\hspace{0.17em}}\left(3,4\right)\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}\left({x}_{1},{y}_{1}\right).$

In slope-intercept form, the equation is written as $\text{\hspace{0.17em}}y=\frac{7}{3}x-3.$

## Standard form of a line

Another way that we can represent the equation of a line is in standard form . Standard form is given as

$Ax+By=C$

where $\text{\hspace{0.17em}}A,$ $B,$ and $\text{\hspace{0.17em}}C$ are integers. The x- and y- terms are on one side of the equal sign and the constant term is on the other side.

## Finding the equation of a line and writing it in standard form

Find the equation of the line with $\text{\hspace{0.17em}}m=-6\text{\hspace{0.17em}}$ and passing through the point $\text{\hspace{0.17em}}\left(\frac{1}{4},-2\right).\text{\hspace{0.17em}}$ Write the equation in standard form.

We begin using the point-slope formula.

$\begin{array}{ccc}\hfill y-\left(-2\right)& =& -6\left(x-\frac{1}{4}\right)\hfill \\ \hfill y+2& =& -6x+\frac{3}{2}\hfill \end{array}$

From here, we multiply through by 2, as no fractions are permitted in standard form, and then move both variables to the left aside of the equal sign and move the constants to the right.

$\begin{array}{ccc}\hfill 2\left(y+2\right)& =& \left(-6x+\frac{3}{2}\right)2\hfill \\ \hfill 2y+4& =& -12x+3\hfill \\ \hfill 12x+2y& =& -1\hfill \end{array}$

This equation is now written in standard form.

Find the equation of the line in standard form with slope $\text{\hspace{0.17em}}m=-\frac{1}{3}\text{\hspace{0.17em}}$ and passing through the point $\text{\hspace{0.17em}}\left(1,\frac{1}{3}\right).$

$x+3y=2$

## Vertical and horizontal lines

The equations of vertical and horizontal lines do not require any of the preceding formulas, although we can use the formulas to prove that the equations are correct. The equation of a vertical line is given as

$x=c$

where c is a constant. The slope of a vertical line is undefined, and regardless of the y- value of any point on the line, the x- coordinate of the point will be c .

Suppose that we want to find the equation of a line containing the following points: $\text{\hspace{0.17em}}\left(-3,-5\right),\left(-3,1\right),\left(-3,3\right),$ and $\text{\hspace{0.17em}}\left(-3,5\right).\text{\hspace{0.17em}}$ First, we will find the slope.

$m=\frac{5-3}{-3-\left(-3\right)}=\frac{2}{0}$

Zero in the denominator means that the slope is undefined and, therefore, we cannot use the point-slope formula. However, we can plot the points. Notice that all of the x- coordinates are the same and we find a vertical line through $\text{\hspace{0.17em}}x=-3.\text{\hspace{0.17em}}$ See [link] .

The equation of a horizontal line is given as

$y=c$

where c is a constant. The slope of a horizontal line is zero, and for any x- value of a point on the line, the y- coordinate will be c .

Suppose we want to find the equation of a line that contains the following set of points: $\text{\hspace{0.17em}}\left(-2,-2\right),\left(0,-2\right),\left(3,-2\right),$ and $\text{\hspace{0.17em}}\left(5,-2\right).$ We can use the point-slope formula. First, we find the slope using any two points on the line.

$\begin{array}{ccc}\hfill m& =& \frac{-2-\left(-2\right)}{0-\left(-2\right)}\hfill \\ & =& \frac{0}{2}\hfill \\ & =& 0\hfill \end{array}$

Use any point for $\text{\hspace{0.17em}}\left({x}_{1},{y}_{1}\right)\text{\hspace{0.17em}}$ in the formula, or use the y -intercept.

$\begin{array}{ccc}\hfill y-\left(-2\right)& =& 0\left(x-3\right)\hfill \\ \hfill y+2& =& 0\hfill \\ \hfill y& =& -2\hfill \end{array}$

The graph is a horizontal line through $\text{\hspace{0.17em}}y=-2.\text{\hspace{0.17em}}$ Notice that all of the y- coordinates are the same. See [link] . The line x = −3 is a vertical line. The line y = −2 is a horizontal line.

## Finding the equation of a line passing through the given points

Find the equation of the line passing through the given points: $\text{\hspace{0.17em}}\left(1,-3\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(1,4\right).$

The x- coordinate of both points is 1. Therefore, we have a vertical line, $\text{\hspace{0.17em}}x=1.$

By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching
bsc F. y algebra and trigonometry pepper 2
given that x= 3/5 find sin 3x
4
DB
remove any signs and collect terms of -2(8a-3b-c)
-16a+6b+2c
Will
Joeval
(x2-2x+8)-4(x2-3x+5)
sorry
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
(X2-2X+8)-4(X2-3X+5)=0 ?
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
Y
master
master
Soo sorry (5±Root11* i)/3
master
Mukhtar
2x²-6x+1=0
Ife
explain and give four example of hyperbolic function
What is the correct rational algebraic expression of the given "a fraction whose denominator is 10 more than the numerator y?
y/y+10
Mr
Find nth derivative of eax sin (bx + c).
Find area common to the parabola y2 = 4ax and x2 = 4ay.
Anurag
y2=4ax= y=4ax/2. y=2ax
akash
A rectangular garden is 25ft wide. if its area is 1125ft, what is the length of the garden
to find the length I divide the area by the wide wich means 1125ft/25ft=45
Miranda
thanks
Jhovie
What do you call a relation where each element in the domain is related to only one value in the range by some rules?
A banana.
Yaona
a function
Daniel
a function
emmanuel
given 4cot thither +3=0and 0°<thither <180° use a sketch to determine the value of the following a)cos thither
what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By Mariah Hauptman By By Cameron Casey By Ryan Lowe By Angela Eckman By Dionne Mahaffey By OpenStax By OpenStax By Saylor Foundation By Cath Yu